LED Update

Over the last couple of years there has been a very rapid development of LEDs. Some problems still remain, others have been mitigated in innovative ways. Summary from some of the latest studies, reviews and consumer tests (links below):

1. Prices have gone down, from shockingly overpriced to reasonably affordable (≈ 4-40€) (1, 2, 3).

2. Brightness. More higher lumen models (600-800 lm have been introduced, and even a few 1100+ lm), but most LEDs are still low-lumen  (≈ 400 lm) – which make the least economic and environmental sense to replace and make dimmable.

3. Efficacy (lumen/watt) has improved (≈ 80 to 96 lm/w). (My comment: But as always, only if not including poor power factor and heat replacement effect in colder regions.) Both watts and efficacy were found to be overstated in many of the lamps tested, sometimes understated. Usually just by a few per cent, but some lamps gave up to 39% less light than claimed on the box (1, 2, 3).

4. Colour rendering index has technically improved (CRI over 80 for most LEDs, a few even over 90). This, however, does not mean that the spectral power distribution is as even or full-spectrum as incandescent and sunlight, only that it has been tweaked to reproduce the required 8 colour samples more accurately when testing.

5. Light colour has improved for many warm-white LEDs. Only a few years ago most LEDs were a ghastly cool-white and the few marketed as “warm-white” could be anything from yellow, orange, greenish, blueish, or pinkish to a dull grey-white. Now, many LEDs have reached a similar decently warm-white emulation as CFLs finally did after 20 years, but the light colour may still vary between models and correlated colour temperature is often somewhat colder than the stated 2700K, according to the latest Swedish consumer tests (2, 3).

6. Colour consistency over time seems to have improved. A multilateral (pro-LED) European study found that only a few lamps exceeded the 6 MacAdam step tolerance limits after 100 and 1 000 h testing (1).

7. Power Factor can still be a problem and may vary greatly between different brands and models – without obvious connection to price. In the last U.S. DoE tests 2011  PF varied from 0.58-0.98 (6). The 2015 European study found all tested samples “to comply with EU requirements” (1). (But the EU requirements for home LED lamps under 25 W is only 0.5 – which means that those with poor PF may still use up to twice their rated energy!)

8. Dimmability. More LEDs are dimmable – but many are still not compatible with all dimmers, so read the specifications carefully. Some of the dimmable samples tested by Testfakta started humming, flickering or shut off completely when dimmed (2). The European study found similar problems (1).

“Five of the LED lamps purchased for this study were marketed as ‘dimmable’. Of these, two of those lamps were able to be dimmed on both types of dimmers (#6 IKEA, #13 Star Trading). The other three lamps had issues with one of the dimmers. Lamp #5 from LED Connection was not compatible with the leading edge dimmer and Lamps #14 from OSRAM and #15 from Philips were not compatible with the trailing edge dimmer.”

9. Warm-dim LEDs. A new generation of LEDs which turn warmer when dimmed have been introduced, thereby better mimicking natural filament lamps – one of the complaints of earlier LEDs and CFLs. These are more expensive, of course (≈ 15-20 €.) (Will test and post review later.) From the Osram press-release:

“In the evenings, and especially when evenings become longer, many people love the snug, warm glow of a burning candle or open fire. Incandescent and halogen lamps create similarly cozy light by simple dimming, but with modern LED lamps this is technically not quite as simple. To create the popular light effect with 2,000 Kelvin here as well, Osram has integrated state-of-the-art LED technology into its new Glow-Dim models.”

(My comment: Funny that that warm romantic glow, priced by so many, was completely ignored by the lighting industry and legislators both, when it was produced by incandescent lamps. But now that there is a synthetic, heavily overpriced, replacement this quality is used to sell a fake copy of the real thing which we all used to love.)

Osram Glow-Dim
Philips Warm Glow
Airam Dim-to-warm

10. Flicker can still be a problem in some lamps. Last summer Hillevi Hemphälä at the Lund Technical Institute started testing LEDs for flicker. She says it’s hard to for the consumer to know which lamps are good or not, as this is not always reflected in the price. There are LEDs powered by a pulsed current, which is a cheaper construction and facilitates dimming, but it can also increase subliminal flicker.  “Problem med flimmer från LED-lampor” Final test results are yet to be published. Testfakta found the flicker index to vary between 0.01 (virtually no flicker) to 0.11 – but no correlation with the price (2). The multilateral European study said, “The flicker index and percent flicker of the lamps were measured and many lamps had no flicker” (1) – which is a roundabout way of saying that the rest of the lamps did have flicker.

11. Life span appears more reliable than for CFLs. LEDs don’t seem to be sensitive to rapid switching on/off, only to overheating which may make some LEDs expire prematurely.

2014, customers were not so impressed (4):

“We lit up your frustrations when we last spoke about LED light bulbs. More than 300 comments were made, most of them about their poor performance and your dissatisfaction with them not living up to their lifespan claims.”

“We’ve tested 410 LED light bulb samples for 10,000 hours or more, and 75 of those (18%) failed within 10,000 hours, even though they all claim to last much longer. And 69 out of the 185 bulbs (37%) we examined at the 15,000 hour mark had failed by that point. Again, almost all of them claim to last longer than this. So, although there are advances, there’s still room for improvement.”

Swedish consumer test magazine Råd&Rön says all their earlier tested LEDs have lasted longer than 5 000 hours so they discontinued durability tests for LEDs, as the models involved would be replaced in the market by the time the long-term test was done (3).

Philips famous L-prize LED has now passed 40 000 hours with no failures and 93.7- 97.5% lumen maintenance, which is very good compared with CFLs (5). (Its 70€ European cousin is still burning nicely in my outdoor luminaire after 3.5 years.)

In the European study, a few LEDs were non-functional right out of the box ().

“Three of the 170 LED lamps tested were defective and did not operate out of the box (and thus could have been returned for a refund / replacement) – thus these lamps were not used in our testing and those models simply had smaller test samples studied. Two individual LED lamps sold by ccLED (both sample #11) failed during the burn-in. Lamp #12 had one unit fail during measurements, but all the other LED lamps so far have not have problems after 1000 hours of testing.”

12. Light distribution has improved. Spreading the light equally in all directions has been a challenge as diodes are naturally directional with quite a narrow beam angle. To get around that problem, diodes were first just placed around a central stick – with mediocre results. Some brands have now solved this by adding a diffusing lens over a single power-LED die – which also markedly increases the price but gives a light distribution more like that of a traditional bulb (though never with the same sparkling clarity, sunny feeling, or beautiful glow, of course).

LED A prism, Osram (lysman.com)

13. Filament LEDs. A new type of filament LED has also been introduced, both to give a better 360° light, and to replace the old Edison-type decorative carbon filament bulbs (which is probably why the EU commission is now removing the exception for those in the latest Directive amendment). It consists of tiny diodes packed closely together on 2 to 8 filaments inside the bulb. This also reduces internal heat and the need for a heavy and cumbersome heat sink, so this type of lamp can be made neater, more light-weight and closer to the original incandescent bulb. (Again, interesting how so much effort is put into trying to emulate all the quality and design advantages of the banned bulb if it was so bad.) 

LED Filament 2200K (E27)

I tested a filament LED with CRI 90 (= improved colour rendition) from Star Trading.  For me it was still not close enough to want to replace a real incandescent bulb in my living room, but OK for outdoors. Others might find it acceptable.

LED decorative c

Filament LED

14. Temperature-tolerance. LED lamps are ideal for outdoors, even in the winter, as they are not sensitive to cold like CFLs (which can take forever to light up in cold temperatures). Outdoor lamps are also the most worthwhile replacing if left on for many hours per day, or night. However, LEDs are still sensitive to heat and cannot be used for example in a sauna. Only incandescent/halogen lamps tolerate heat well.

15. Health risks risks may still be an issue. This LEDs Magazine summary is from 2010 but LED light has not changed substantially, other than glare often being less of an issue than with early lamps. But they still contain more blue light which can irritate the eye, disrupt circadian rhythm and be harmful to people with blue-light sensitive eye conditions. Flicker can also be disrupting (and for epileptics even dangerous). Others experience a various symptoms, e.g. migraines, vertigo, nausea, inexplicable visual distortions that make it impossible to see in LED lighting and much more. An anecdotal example sent to Incandescent Anna:

“I am extremely sensitive to LED lighting both indoor and outdoor. They have been erected outside my home and now I can’t even step in to my own front garden without symptoms of severe eye pain, migraine, nausea, vomiting, aura, vertigo, increased heart rate and ringing in my ears. It hits me immediately and the severity and length of symptoms depend on the length of time I’m exposed. 
I have known for 7 or 8 years of this extreme intolerance to LED when I first got a DS Lite, back-lit with LED and I couldn’t bare to look at it. I can’t use any LED backlit phones or monitors. I don’t think that my symptoms are getting worse but my recovery period is now non existent because LED is everywhere. If I am round CFL for a prolonged period I develop headache and agitation but nothing like the symptoms I have around LED.”

16. LED li-fi. LED lamps can now be used for delivering ultra fast wi-fi. Considering how many have experienced severe symptoms from smart meters, does this sound like a good idea?

Tests & Reviews

1. Test Report – Clear, Non-Directional LED Lamps (Swedish Energy Agency, Belgian government, CLASP’s European Programme, eceee, 2014-2015)
eceee – summary of above test
2.Testfakta – test table (Sweden 2015, partly in English)
“LED närmar sig glödlampans ljuskvalitet” (test article in Swedish)
3. Råd & Rön – LED test (Sweden, 2015-2016, 25 SEK to read)
4.“A Nobel Prize for LED bulbs but do they get your vote?” (UK, Oct 2014)
5. “DOE Testing of L Prize LED lamp passes 40 000 hours” (USA, Aug 2015)
6. U.S. DoE – CALiPER SSL tests (USA, 2007-2016, detailed but not very updated)
Stiftung Warentest – Lampen im Test Das beste Licht für Sie (Germany, 2015, 3€)
Consumentengids – Test Ledlampen.pdf (Netherlands, 2015)
CNet – Best LED Light Bulbs (2016)
Best LED Light Bulb Reviews and Comparisons
 (2016)

Flickering LED

A friend’s ​apartment building has recently been refurbished with warm white LED downlights in the entrance hall and corridors. Being of higher quality than the usual mediocre LED bulbs sold in shops, these lamps gave a more pleasant light and ambiance than the tired old fluorescent tubes. The change also included motion sensors which would turn the lights off when not in use, which is smart and energy saving. All in all, a definite upgrade.

However, last time I went to visit, one of the downlights had gone completely crazy and flickered in regular bursts like a strobe light! Even though I’m not prone to seizures, I found it extremely disturbing and could hardly walk past it with my eyes open. After making sure the super would come and fix it a s a p, I managed to film a few seconds of this horror. (Do NOT watch if you’re epileptic!)

I don’t know if this is common behaviour in failing LEDs. These were less than a year old and should not be failing so soon. Oh, and it turned out the super couldn’t do anything as these LED downlights required specialist help from the company that installed them. No longer a matter of just replacing a burned-out bulb or tube.

Even though annoying enough, I’ve never seen a failing fluorescent tube flicker with such a sharp and piercing strobe effect. This seems like a rather serious issue.

For instance, photosensitive epilepsy is more common than one might think, affecting “about one in 4000 individuals,” according to the group. Factors that may combine to affect the likelihood of seizures include flash frequency in the range of 3 to 65 Hz, and especially in the range from 15 to 20 Hz. That’s why line frequency fundamentals (50 or 60 Hz, depending on country) are important and why asymmetric behavior of the external triac controller is significant.”

http://electronicdesign.com/lighting/do-leds-have-dark-side
More to read on LED flicker:

http://www.ledsmagazine.com/articles/print/volume-11/issue-4/features/developer-forum/proper-driver-design-eliminates-led-light-strobe-flicker.html

Update: The year after, another LED downlight in that same apartment building started flickering in exactly the same way. It kept doing so for weeks before it got fixed.

Swedish Consumer Tests Autumn 2012

There were two major Swedish tests made during fall 2012. Råd & Rön and Testfakta. The former is issued by Sweden’s leading consumer organisation, Sveriges Konsumenter, and the latter is a privately owned consumer testing company supplying independent testing of consumer products for major newspapers in Scandinavia.

Råd & Rön

Compact Fluorescent Lamps

I won’t bother making translated tables of the CFL data as they still have the same inherent problems as reported from earlier tests, so nothing new there. Instead I’ll let a translation of the CFL part of the Råd & Rön article summarise their test results:

The quality is more varying among the fluorescent lamps than in LEDs. Our test shows that there are many bad CFLs. Durability is a sensitive subject. Sure, only some lamps had gone out after 2000 hours. (We tested five samples of each lamp.) But many of the poorer quality fluorescent bulbs cannot withstand many on-and-off cycles. Philips Softone 20W can handle just a little over 5 000 on-and-off cycles. Manufacturers indicate lifetimes of 6 000 to 12 000 hours, resulting in a life expectancy of 10 years. This is hardly true for the worst lamps in the test. Sylvania Mini-Lynx Fast Start is a really bad lamp. As all lamps had gone out before 2 000 hours, we could not do the remaining tests.

Not for outdoor lighting

The fluorescent lamps have been on the market for a long time. Many have complained that they take time before reaching full brightness, and this is still the case. This is particularly true in low temperatures. There is a clear disadvantage if you want them in outdoor lighting, or for example in bathrooms and closets where you are anxious to reach full brightness quickly. Philips Softone Candle 8W for example, reached only 2 percent of its light output after 10 seconds when it was lit at plus 5 degrees and 1 percent of its light output at minus 10 degrees [Celcius]. The fluorescent lamps have also consistently slightly worse color accuracy than the old bulbs.

Well, lo and behold! This is the first time Råd & Rön have totally dissed the precious CFLs, even though these problems have been found in every one of their previous tests, and usually a lot worse too – as CFL quality has improved slightly over the last few years compared with the really really bad earlier specimens – which previous Råd & Rön articles have still insisted were mostly great, despite their own test results showing a different story.

So why this sudden change of tune? Ah, because now there is a new, even more politically correct lamp on the market, which makes manufacturers even more billions.

LED bulbs

From September 1st 2012, incandescent bulbs are no longer manufactured in the EU. They are very inefficient, only 10 percent of the energy becomes light, the rest is heat. They have been phased over several years and now the last models are gone.

Interesting that a supposedly independent and neutral consumer test article feels a need to insert the PR line about the alleged – but disproven – energy inefficiency of the now banned incandescent lamp. They don’t seem to realise that this is the equivalent of adding that one of the soda pops in a test “gives you wings” or “because your’re worth it!” when testing face creams.

And then the unabashed PR for their new pet lamp, the LED, just goes on and on:

Now even the LED are entering the market in a big way. They are even more durable and efficient than the fluorescent lamps. Previously, there has not really been models adapted for the fixtures we have in our homes. LEDs have also been very expensive. Now, there are LED lamps in a form that fits into standard fixtures. The prices are also coming down, LED – lights in our test cost from SEK 400 down to 100 each.

Oh hooray! Aren’t we lucky now that we can get a 400 lumen bulb (less than the equivalent of a 40W incandescent) for ‘only’ 10 to 40 €! Old bulbs were 5 SEK (half a euro) and gave a much better light. The lamp industry must be laughing their socks off all the way to the bank: “There’s one born every minute.”

Said to last for 25 years

LEDs are incredibly durable. We have in this test so far let them burn for 2000 hours, and only one copy of all the lights (we tested five samples of each lamp) went out during that time. Since previous tests, we know that LED bulbs can burn longer than that, 5,000 hours. We will let them burn as long this time and will be back with updates of the results. Manufacturers usually specify lifetimes for LED lamps of 15 000 – 25 000 hours, that is, a life expectancy of 15-25 years. There are values ​​that we obviously have not been able to verify.

So, how can Råd & Rön state as a fact that they are “incredibly durable”? Sounds more like a “probably the best lamp in the world” slogan to me. And why not actually test them for the full stated life? Or at least half? Then we would see how little light comes out of them by then, and how durable they really are.

LEDs are also very effective. They consume less energy than fluorescent lamps and much less than halogen lamps. Not to mention the old incandescent light bulbs – an LED bulb uses 80 percent less energy than an old bulb.

For this to be true, they would have to give 5 times more light per lumen than an incandescent, and consistently over time. From their own numbers I get a mean of 4.6 initially and this will decrease over time. Taking the heat replacement effect into account, this number should be cut in half. IKEA, Philips and other lamp producers often claim as much as 85% more effective to make it sound more worthwhile buying these hilariously expensive lamps instead of the CFLs that have now become less profitable.

Lights up at once

LEDs provide plenty of light as soon as you turn the switch, unlike fluorescent lamps. Another advantage is that LED lamps also work well at cold temperatures, the lamps actually work even better then. And even at cold temperatures, the tested bulbs light up immediately. Suitable for outdoor lighting in other words.

Well, not all of them: the Verbatim lamp took longer to light up, according to test data. But yes, LEDs are often a better choice for outdoor fixtures than CFLs in countries with cold winters.

One disadvantage is that the LEDs can have a well cold, almost bluish white light. They also reproduces colors slightly worse than halogen and incandescent bulbs.

But technology advances and the number of lights in the test have received a warmer light, and also a better color reproduction. Osram LED Parathom ClasA60, Ikea Conductors 8, 1W and Philips Led MyVision have received the best results for color among LEDs.

Yes, they are getting better. But they will still never be able to reach the same light quality as incandescent and halogen incandescent lamps because the light is still a composite light, from a mixture of phosphors trying to emulate the real thing.

If in doubt, ask to see how the LED lights in the store before you buy it.

This piece of advice is only partially helpful since the store is not dark. It helps you weed out the clearly blue-white, green-white or violet-white lamps. But as can be seen in my previous LED reviews, a warm-white lamp can look great in the shop. But then when you switch it on at home you’ll find that the colour is a bit off, that it produces a duller ambiance and generally doesn’t feel as good as more natural light sources such as sunlight and incandescent lamps.

Here are the test data put into my own table for easier comparison with old incandescent lamps (click to enlarge):

R&R 2012b LED

I will also add a copy to the Consumer Tests LED page to keep them all together.

Halogen bulbs

The Råd & Rön article continues:

Halogen lamps, on the other hand, have good colour properties. They reproduce colors accurately, just like the old bulbs did. They are also considerably less expensive than both LED lamps and fluorescent lamps, and cost SEK 15-30 each. But they are far less energy efficient and have a shorter lifespan. Ikea 70W Halogen was the only lamp in our tests where all samples still burned after 2000 hours. This means a life of about two years and more promises nor manufacturers.

The table actually shows quite poor results for all the tested halogen lamps. All top quality when it comes to colour rendition and light quality, of course – except one IKEA lamp which also had a higher colour temperature, so they must have done something to it. But quantity-wise, these halogen energy savers appear only marginally more effective than the original equivalent incandescent lamps.

When this happens year after year, despite the fact that it is quite possible to produce halogen lamps with both higher efficacy and durability, I’m starting to suspect that this is by design so as to help these last incandescent-family low-profit lamps out of the market when up for review by the EU Commission in 2014. This is not acceptable!

2012b Halogen

Testfakta

LED bulbs

This test doesn’t measure durability over time but some other interesting features such as flicker and how the light spreads. It also adds an incandescent lamp for reference. Translation of the test article [emphases added]:

Testfakta have investigated eight omnidirectional LED bulbs and compared them with their glowing predecessor. The lamps test correspond to about a 40-watt incandescent bulb in brightness and color temperature.

– One major difference lies in how LEDs spread the light. But what surprised me most was the time it took to light a couple of lamps, and some gave excessive flicker, says Håkan Skoogh, test manager at the Swedish Technical Research Testing.

Together with fluorescent lamps, LED technology is the incandescent-replacing alternative that provides the greatest energy savings.

The Testfakta test also shows that LEDs provide between five and seven times as much light per watt as incandescent lamp. While it differs as much as 30 percent between the most efficient lamp from Jula and the least efficient from Ikea.

– In this context, Ikea’s energy efficiency is on the low side. On the other hand, it has the good color rendering and these things usually go together – if you want good color, you often get poorer efficiency, says Håkan Skoogh.

But it is possible to have both high efficiency and high color rendering. It shows the overall test winner V-Light from Clas Ohlson, which is also among the least expensive lamps in the test. V-Light is the only lamp that comes close to the incandescent bulb’s ability to reproduce colors. Osram, Megaman and Cosna on the other hand, fall just below the limit of what is recommended for home environments.

– Unfortunately, this is a problem that we have to live with for a while in terms of LED technology. If you want the perfect color in the bathroom or above the hall mirror, for example, to see how the clothes match, you may unfortunately put up a halogen lamp instead, says Håkan Skoogh.

Another challenge for the LED industry is that the light from small LEDs is so directional. It is ideal for spotlights, but worse when you want to replace the incandescent bulb’s omni-directional effect. Laboratory measurements clearly show how most of the LEDs spread the light at an angle forward and not so much to the sides.

– If you have for example a decorative lamp with a side shade, then you want some of the light to come through it. But with lamps such as the Osram lamp, a large part of the light rather goes straight up to the ceiling.

The exception among the tested lamps is Connect from Jula. Here, the manufacturer uses another technology with a light guide that leads the light from the diodes and outward.

– It works quite well even if the light ahead will be somewhat weaker than in the bulb, says Håkan Skoogh.

There may also be advantages to different types of light scattering. Forward-facing light is preferable, for example, a desk lamp.

– It would be best if the producers had a light distribution curve on the package so that you as a consumer can see which bulb fits best.

The laboratory also examined how much flicker the lamps produce. Research suggests that flicker from screens and lamps can have adverse medical effects such as fatigue and stress. It was found that the lamps from Jula and Cosna flickered unnecessarily much.

– It shows very clearly and is not good. Flicker has primarily been a problem in old fluorescent and should not be in the LED lights. It must be about poor construction, says Håkan Skoogh.

Another thing that should not have to occur with LED technology is long ignition times. And yet the lamps from Osram and Star Trading clearly react slower later the rest.

– It is unnecessary and distracting, says Håkan Skoogh.

2012 LED Testfakta

Link to Testfakta test table

Article: Billig lampa ger bäst belysning

 

New Philips-Apple LED Innovation

This new Philips RGB bulb can be set to almost any colour, just like other RGB lamps. But instead of a separate remote control, this one is controlled by an iPhone or iPad app, wich makes it a lot more flexible.

Specs given are: 8.5 watts, 600 lumens (equivalent of 50 watt incandescent) and not compatible with existing dimmers – although it seems that lamp brightness can be controlled via the app.

Here is a demonstration from Philips (the spoken text is in English so don’t be put off by the Swedish header):

It’s not available in my country (yet?) so I can’t review it (I also don’t have an iPhone or iPad and it won’t work on my Macbook or Android) so here is another video review instead:

The Apple store website has more reviews.

I’m glad to see new creative ideas being applied to LED technology, making use of what it does best: create coloured light, instead of trying to imitate incandescent lamps – which any non-incandescent light technology is predestined to fail at since you cannot reproduce the quality (glow, feel and colour rendition) of fire-based light without it containing the element of fire.

But very cool that light temperature can be set (and pre-set) to perfectly suit one’s mood and various activity levels during the day. How precisely that works in real life, and how well those settings reproduce existing colours, I’d like to see for myself, but I like the idea so far.

EDIT: Oh, now I saw that this “smart-lamp” was already invented by LIFX and launched in September. The presentation on kickstarter.com and the video on LIFX website shows the exact same features but also working with Android. Seems Philips ripped off the idea and made it an Apple exclusive. That’s not very creative.

And here was me starting to warm to Philips a bit. Ah well… 

Coloured LED Review 2

6W IKEA ‘Dioder’ RGB Lighting Strips

IKEA Dioder (photo: IKEA)

Info: 6W, 90 lumen, 20 000 hour life rate. Strips join together into either one long strip or at angles, e.g. around a small mirror.

Price: About €30.

Colour: All colours, easily picked with control panel. Can be set to monochrome, alternating or fading seamlessly through the spectrum.

Impression: Great product! Very flexible design. More decorative than for illumination but it worked perfectly for the purpose I bought it for, which was to give a soft coloured light from under the basin cabinet while brushing teeth at night (as my bathroom lamps are not dimmable and I can’t stand bright light right into my eyes just before bedtime). So then I use the red setting, which is the darkest and the least melatonin-suppressing.

Red light (photo: Halogenica)

When I have guests or just want a change, I can use other colours and make my bathroom look really festive and colourful with just a click on the control panel.

Green (photo: Halogenica)

Blue (photo: Halogenica)

Violet (photo: Halogenica)

Cool-white (photo: Halogenica)

Love it! Unlike the gloomy excuses for ‘warm-white’ LEDs at IKEA, the varying colours on this one really cheers one up! If I had kids, I’d make a magic room for them with several of these.

I do have my doubts about it lasting for 20 years, but let me get back on that one… 😉

Warm-White LED Review 2

3W Philips ‘MyAmbiance’ LED Candle Lamp

Info: 3W, E14 socket, clear, 136 lumen, 20 000 hour life rate.

Price: Over €10.

Colour: 2700 Kelvin, decently warm-white.

Impression: A similar design as the semi-opaque candle LED but clear. This one too looked nice enough in the shop that I had to try it at home. But alas, same thing again… Decorative design and decent light colour but the reflected light was just dull and gloomy, compared to the brilliant sunny warmth of incandescent light.

And I’m not trying to find fault with LEDs here. Quite the contrary. If someone could produce an LED that gave as nice a light as incandescent lamps, I’d be happy to give my incandescent advocacy a rest and leave well enough alone.

But it’s not good enough. At IKEAs the other week, a whole section of their lamp department was lit by LED lamps only, and the effect was sadly gloomy too. I can not imagine a future with only such poorer quality light available.

LED News Snippets

I’m starting to get really tired of all these LED articles and press-releases now replacing the over-optimistic CFL -pushing articles in the news stream, so sorry for starting out a bit grouchy. But I’ll report them anway.

1. First, this declaration from IKEA has been circulated widely over the last week:

IKEA Chief: We’re Leading America’s LED Lighting Revolution

In his dreams maybe. And our nightmare.

IKEA is setting out to change the way you light your home, one bulb at a time.

The Swedish retailer announced plans this week to become the first U.S. home furnishings chain to sell only LED (light emitting diode) bulbs and lamps by 2016 — a bold push for the widespread adoption of this energy-efficient light source in the American market. The world’s biggest home retailer will phase out its non-LED lighting over the next few years.

Which is none of its business! What happened to consumer choice?? I’m not sure if any promises were made to consumers by the U.S. Government, but the European Commission has promised continued availability of halogen lamps until 2016, so I don’t see how IKEA has a right to make them unavailable. But as the profit margin is now bigger for LEDs than for CFLs and halogen lamps, the decision makes perfect sense. IKEA has had nearly two decades to make huge profits on really crappy CFLs, and now they want to make even greater profits on to pushing crappy LEDs instead and removing all competing products.

Smart, from a business point of view, but not a consumer-friendly decision. As explained in previous posts, there are for example elderly and vision impaired who only see well in incandescent/halogen light. With LEDs there are dimming problems, higher price, poorer colour rendition and you get a gloomier ambiance in your home.

Integral to that plan is educating the U.S. consumer about the many benefits of LED lighting: LEDs are not only more eco-friendly than incandescent bulbs, but also use 85% less energy and are therefore less expensive over time, Mike Ward, president of IKEA USA, told DailyFinance.

Sigh… here we go again. For LEDs to use 85% less energy, they would have to produce about 100 lumen per watt. Even the best LEDs on the market don’t do that, and I very much doubt IKEAs LEDs counts among those, either in quality or quantity.

But selling the idea won’t be a slam dunk, as the initial cost outlay for LED bulbs far exceeds that of incandescent bulbs, Ward concedes. A 40-watt LED bulb costs about $12 at IKEA, whereas an incandescent bulb ranges from approximately 49 cents to 79 cents. But what most Americans (about 73%) don’t know is that LED bulbs last 20 years, according to Wakefield Research cited by IKEA. Incandescent bulbs, by contrast, last only about a year, Ward said.

Oh, I think they do know this since it’s being repeated with the same fervor as the earlier CFL PR slogans (which turned out to be totally false in real life). What consumers may not know, however, is that theirLED light will continue to get weaker and weaker with age, and be useless for illumination long before those 20 years are up. In which time much better lamps will probably have been invented and then you’re stuck with an outdated and increasingly poorly performing lamp for a decade or more.

2. Then Philips wants to blind us further with even more extremely cold and glaring LED car headlamps:

Philips Introduces New X-tremeVision LED Replacement Bulbs

These new X-tremeVision LED bulbs are available in two light color temperatures: 4,000 K and 6,000 K. The 4,000 K white light is much closer to daylight than a traditional incandescent interior bulb. The 6,000 K version takes it up a notch and delivers the bright white look of Xenon HID, yet consumes 13 times less energy, according to Philips.

Grrr. Why would anyone want daylight at night? That is totally unnatural. And trying to emulate Xenon HID is an extremely bad idea since they are the worst headlight lamps ever invented. See also my post Blue light hazard? for how blue light is more glaring and blinding than warmer colour temperatures, which is not exactly helpful in traffic! Extreme light is not what you want to meet on the road when driving at night. Is this a sort of empathy thing? Where the driver is meant to care only about his/her own visibility even if it blinds and endangers meeting traffic?

3. At least LED bulbs for home illumination are getting brighter:

LEDnovation introduces 75W- and 100W-equivalent A-lamps, warm-on-dim BR30

Good.

4. And some of them cheaper, for some markets [translated from Swedish article from earlier this year]:

Ledlampan spränger drömgräns (“LED lamp passes dream limit”)

The Dutch Lemnis Lighting which started selling a joint lamp for $ 4.95. The goal is to attract consumers who are hesitating to buy led lamps as the price so far has been high, often several hundred pieces.

The lamp is relatively simple and can not be dimmed. It delivers 200 lumens, much like a 25 watt bulb, but the effect is only 5 watts. Color temperature is 2700, which gives a warm white light. Colour rendering index, CRI, is 85, and life is said to be 15,000 hours.

So far the lamp only on sale in Lemnis American online store that caters to clients in USA, Mexico and Canada.

Lemnis Lighting has by his own admission has sold more than 5 million LED lights since 2006. When New Technologies in June 2010 tested LED lights representing 40 watt bulbs so got Lemnis candidate best results of the three tested.

One of the founders is also Warner Philips, the great grandson of the founder of lighting giant Philips.

Clearly not in Europe though. Skipping the dimmability I think is a good idea since they don’t dim nicely anyway. I would still not pay even $5 for a 200 lumen LED, but for those who don’t mind the lower light quality it’s good they are making an effort to bring prices down.

5. And innovations can improve function [another Swedish article from September]:

Ledlampan som vänder upp och ner på tekniken (“The LED lamp that turns technology upside-down”)

3M has developed a LED lamp that is unlike any other. While other lamp manufacturers put the diodes in the bulb and the driver electronics in the socket 3M does the opposite.

In a ring in the socket, ten diodes are placed that send the light straight up. The light passes along the contour of the globe, thanks to a waveguide spreading the light over the entire surface to radiate in all directions. Everything to mimic the light from a frosted lightbulb.

The driver electronics are inside the bulb, a slick solution because it is more spacious and airy there, compared to the socket where the electronics usually sit. Many LEDs therefore have bulky heatsinks to prevent the diods from getting too hot and lose both intensity and longevity. In the 3M narrow slits in the bulb helps ventilate the heat.

3M launches two wattages. One of 13.5 watts which provides 800 lumens and can replace a 60 watt incandescent bulb. The second is at 8.5 watts and provides 450 lumens, equivalent to a 40 watt bulb. Both are available in two versions for warm white and cold light. Life rate is said to be 25 years if you use the lamp three hours a day on average.

The new lights will be on sale in Walmart stores across the U.S. this fall. The price of the 13.5 watt lamp is as reported in the American press to be 25 US dollars.

 

More on LED

Light Colour

I recently had a look at some of the currently available LED bulbs in my local hardware store. The majority were more or less appalling in light colour. Two clear bulbs (with little light dots stuck on a stick) were green-white. Seven of the frosted LED bulbs were an odd sort of cool purple-blue-white despite being marked as “warm-white”. Only a few were even remotely warm-white for real. Many of the LED bulbs were also very dim, and useful for absolutely nothing.

But I have to say that the 12 W Philips Master LED-series MyAmbiance bulb (Swedish consumer test winner 2011 and predecessor of the improved U.S. L-Prize test winner) looked very incandescent-like from just looking at the lit bulb there in the store, and it was nice and bright without being glaring.

But as I didn’t feel like spending €70 (!) on a lamp I’m not sure I’ll like at home, or how long it will last or retain its original colour and brightness, I have yet to see how it looks in a home environment without all the lit surrounding lights. Maybe I’ll buy one later anyway just to satisfy my curiosity.

It was very heavy though… Probably because of all the electronics inside and the amount of metal needed for heat sink.

Philips online catalogue specifies it as Warm White, CCT 2700K, CRI 80, approx 825 Lm, and 25 000 hr rated average life.

Left: an unlit Philips 12 W Master LED
Right: a lit Philips 10 W L-Prize winner
Source: youtube screenshot

As can be seen in the latest CALiPER test by U.S. Department of Energy on Home LED Replacement Lamp 2011 (Table 1.), very few of the 38 different lamps had a CCT (correlated colour temperature) under 3000 K. I think in replacement lamps it needs to be actually a bit under the ~2700 K of incandescent lamps to look as warm – if that is the aim.

Colour rendition

In photography and cinematography, the colour rendering capacity of the light source is of essence. Here is an example from a highly informative ScreenLight & Grip newsletter:

 

CRI hi&lo (ScreenLight & Grip)

The newsletter author comments:

I also wouldn’t try to light a table-top food/product shot with LEDs either. As is readily apparent in the shots above, because of their limited color rendering capability, food presentation that will look vibrant and colorful to eye, under LEDs will tend to look a little dull on camera. By comparison a full spectrum daylight source such as HMI or LEP will capture the vibrant colors. Likewise, I wouldn’t try to mix LEDs with a uniform continuous light source, such as a studio lit with tungsten fixtures. If caught in isolation, their color deficiencies will be quite noticeable and unacceptable in comparison to the tungsten.

Colour shift

Even the unusually good looking warm-white colour of Philips’ next best LEDs may not last, as the light is not produced by RGB (mixing of red-green-blue light to produce white, which is also an option in LED) but by blue diods behind a yellow phosphor mix coating on the inside of the yellow parts of the bulb.

It is common for phosphor-based light sources that the phosphors that produce the red part of the spectrum get consumed first, turning the light more and more blue or green as it ages, and LED phosphors are no exception.

LED colour shift
(image from SceenLight & Grip)

There is an electronics store in Stockholm (Kjell & Co) where the counters are lit from above with rows of LED reflector lamps, of which some have been replaced. The result is exactly like the example in the top right photo above. Not very attractive. And the whole atmosphere of the store feels more like a morgue than someplace I love to go shopping, even though I like their products.

In ‘cheaper’ (well, comparatively speaking) LEDs, such as those mentioned above, this colour shift can be seen fairly soon.

Possibly, this may be avoided in the L-Prize bulb which has some red diodes inside and not just blue, so it will not be dependent on the red-producing phosphors to stay warm-white?

And if you have wondered why colour uniformity even in new warm-white LEDs seems so hard to achieve, it depends not only on the phosphor mix but also, apparently, on the diods themselves. The ScreenLight & Grip e-newsletter explains it well:

Given the irregularities inherent in the manufacture of the semiconductor wafers from which White Phosphor LEDs are stamped, the LEDs in a production batch are all slightly different. In a mechanized testing procedure, they are sorted and grouped together into bins according to their flux and color. Binning has been refined over the years, and these days the tolerance of the best binning systems allow barely perceptible differences between LEDS from a selected bin. The difference in color between two sources is quantified using what is called the “MacAdams ellipse.” A MacAdams ellipse defines the distance at which two colors that are very close to one another first become distinguishable to the human eye as different colors. As illustrated below, for a given point of color on the chromaticity diagram, the MacAdams ellipse defines the contour around it, where the colors that surround the point are no longer indistinguishable from that of the point.

Unfortunately, even the L-Prize testing committee finds colour variations acceptable for home lighting LEDs, as can be seen in the Technical Review document [credit to Freedom Lightbulb for finding a copy of it!] under the point Color maintenance (emphasis added):

Variation among submitted samples are well within the allowed limit. However, Philips asks for less tight tolerance for the production lamp, proposing a 0.006 variation limit. Although there are some concerns about users perceiving a slight difference in color appearance between lamps, Philips indicates that a ∆u’v’ of 0.006 is the maximum boundary and 90% of the production lamps will fall within a 0.004 ∆u’v’boundary. Given that an absolute tighter tolerance is a trade-off with cost, the TSC believes this tolerance to be acceptable. 

In the latest CALiPER test by U.S. Department of Energy on Home LED Replacement Lamp 2011 with samples of A19 bulbs, G25 globes and MR16 and PAR20 reflector lamps, colour variations were between 0.0010 and 0.0100! Not that I’m quite sure what such numbers translate to visually, but if Philips and the prize committee sees a variation of 0.004 or 0.006 something to haggle over, then it certainly sounds significant.

Dimming

The ScreenLight & Grip e-newsletter also explains the difficulty in getting LEDs to dim as easily and beautifully along the Planck curve as incandescents do.

Another problem is that, while it is relatively easy to put a dimmer on an LED, and blend two different color LED chips to achieve variable color mixing, as we saw above it is quite a different matter to track the color so that it remains on the black body locus at every point from daylight balance to tungsten balance. Maintaining a specific color temperature at a high CRI while dimming is made even more difficult by virtue of the fact that temperature in the LED changes when they are dimmed. Change in temperature shifts output wavelength as well as efficiency, and different LED chips change efficiency at different rates and at different temperatures. For these reasons, a more complex approach to dimming is required in order to control all these factors.

And as noticed by Save The Bulb, even the best LED replacement bulb available on the market today, Philips Master LED (same family as the L-Prize LED bulb) doesn’t dim very well (emphases added):

The [LED lamp] got cooler in appearance and the perceived colour rendering became much worse casting a gloomy grey in the space.

[T]he lamp also suddenly went out about half way through the travel of the dimmer’s slider, the GE lamp dimmed right down to the minimum setting. What was really alarming was that the [LED] lamp would not switch on at dimmer settings below about 70%. This was a serious problem in this location where three way switching was installed.

Really I am somewhat disappointed in a product that cost me $19.75 and does not work reliably at less than full power even when it claims to be dimable. Solutions such as this must be made fully compatible with existing wiring infrastructure.

Dimming incandescent

GE Reveal fulll on and dimmed
(photo: Save The Bulb)

Dimming LED

Philips LED fulll on and dimmed
(photo: Save The Bulb)

My comments:

1. Note how the LED, even when turned on fully, is not quite as warm as the blue-enriched GE Reveal incandescent lamp.

2. Note also how the LED (being a directional light forced into an omnidirectional bulb) mainly illuminates the ceiling area and leaves much of the corridor in the dark, whereas the incandescent lights up the whole space more evenly.

3. And finally, how the incandescent dims nicely along the Planck curve and gets warmer without losing light quality, as the light from all natural light sources always behaves. Whereas the LED light indeed turns into a gloomy blueish grey.

The L-Prize committee technical review says:

Capable to at least 20% dimming of maximum output without flicker.

Although the initial dimmers designated by Philips did not appear to be widely available and testing conducted by PNNL with a wide variety of dimmers showed several issues with the subnitted lamps, Philips redesign of the driver for the production lamps will meet these criteria. Philips has also stated that they will reveal any known incompatibilities in their product literature and on their website. 

That doesn’t sound overly reassuring…

Instead of searching Philips already hard-to-navigate website for info on which dimmers may be incompatible, I think I’ll just avoid putting any Philips LED bulb in any of my dimmable fixtures (I’ve already fried one dimmer when I thoughtlessly tested a CFL). I believe the reason some CFLs and LEDs are made dimmable is primarily to make them work with existing installed dimmers without blowing the circuits, not to actually be dimmed.

Power Factor

According to the CALiPER test mentioned earlier, Home LED Replacement Lamp 2011, Power Factor on tested lamps ranged between 0.38 (!) and 0.99.

And the L-Prize testing committee found it perfectly acceptable with 0.70 PF even for the best LED lamp, when used at home:

…and explains why (my emphasis):

Power Factor for submitted lamps meets both criteria. However, the production lamp design does not meet the L Prize criteria for commercial applications, but all lamps will be greater than 0.7. The TSC finds this acceptable as it understands the lower power factor is a trade off with more universal dimming performance and that an important early market for the L Prize lamp is the residential market. 

But this bulb is absolutely useless for dimming! So what’s the point in trading away better PF for a desired function that it flatly fails on?

Flicker

The excellent German site Argumente für die Glühbirne [thanks again to Freedom Lightbulb for the link] reports that consumer magazine Ökotest (‘Eco-test’) issue 11/2011, found LEDs to flicker! How much varied between brands. Flicker in the 11 test specimens was:

2 LEDs extremely pronounced
5 LEDs pronounced, but also on higher radiofrequency
1 LED pronounced
3 LEDs weak, but also at higher frequencies

Rare elements

From another page on the Glühbirne site (translated by google):

The 17 rare earth metals include cerium, dysprosium, erbium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, scandium, terbium, thulium, ytterbium, yttrium.

Rare-earth metals are not rare. The name comes from the fact that they originally found in rare minerals were. Some of the rare earth metals are more common in the earth’s crust than other elements, but larger deposits of suitable minerals are rare indeed.

China dominates the market for rare earths.

2010 was the share of world market at 97 percent.

2011 China has reduced the export volumes for the umpteenth time.

For some metals (yttrium, thulium and terbium which are required for CFLs) there is a complete export ban.

Following referenced links to Send Your Light Bulbs To Washington, which in turn quotes a Light Bulb Choice blog post, quoting
renewableenergyworld.com and conexiones.com):

Huge Price Increases Underway from Lamp Manufacturers: The impact of rare earth metals shortages

There is a rapid, emerging shortage of rare earth metals, a primary component used in the manufacture of fluorescent lamps – principally phosphors. Phosphors are transition metal compounds or rare earth compounds of various types. The most common uses of phosphors are prevalent in green technologies such as batteries, magnets, computer hard drives, TV screens, smart phones, and energy-saving light sources – and fluorescent lamps.

The problem with the supply of rare earth elements is that demand has skyrocketed over the last decade from 40,000 tons to 120,000 tons. Meanwhile, China, who owns the monopoly of rare earth minerals has been cutting its exports. Today, it only exports about 30,000 tons a year – only one-fourth of the world’s demand.

In a U.S. Department of Energy report dated December 14, 2010, it was noted that ”it is likely to take 15 years for the U.S. to mine enough rare earth minerals to shake its dependence on China.”

With China currently controlling up to 97% of the world supply of rare earth metals, it shouldn’t come as a surprise that they’ve been imposing tariffs and severe export restrictions.

More from Journal of Energy SecurityThe Battle Over Rare Earth Metals

Also, as reported in a 2-page article in New York Times: Earth-Friendly Elements, Mined Destructively with sad pictures of ruined landscape, there is nothing environmentally friendly about how rare earth metals are mined in China (emphasis added):

Here in Guyun Village, a small community in southeastern China fringed by lush bamboo groves and banana trees, the environmental damage can be seen in the red-brown scars of barren clay that run down narrow valleys and the dead lands below, where emerald rice fields once grew.

Miners scrape off the topsoil and shovel golden-flecked clay into dirt pits, using acids to extract the rare earths. The acids ultimately wash into streams and rivers, destroying rice paddies and fish farms and tainting water supplies.

On a recent rainy afternoon, Zeng Guohui, a 41-year-old laborer, walked to an abandoned mine where he used to shovel ore, and pointed out still-barren expanses of dirt and mud. The mine exhausted the local deposit of heavy rare earths in three years, but a decade after the mine closed, no one has tried to revive the downstream rice fields.

Small mines producing heavy rare earths like dysprosium and terbium still operate on nearby hills. “There are constant protests because it damages the farmland — people are always demanding compensation,” Mr. Zeng said.

“In many places, the mining is abused,” said Wang Caifeng, the top rare-earths industry regulator at the Ministry of Industry and Information Technology in China. 

“This has caused great harm to the ecology and environment.”

Many mining operations are even run by gangsters:

Half the heavy rare earth mines have licenses and the other half are illegal, industry executives said. But even the legal mines, like the one where Mr. Zeng worked, often pose environmental hazards.

A close-knit group of mainland Chinese gangs with a capacity for murder dominates much of the mining and has ties to local officials, said Stephen G. Vickers, the former head of criminal intelligence for the Hong Kong police who is now the chief executive of International Risk, a global security company. 

Telling illegal ore from legal does not seem possible:

Western users of heavy rare earths say that they have no way of figuring out what proportion of the minerals they buy from China comes from responsibly operated mines. Licensed and illegal mines alike sell to itinerant traders. They buy the valuable material with sacks of cash, then sell it to processing centers in and around Guangzhou that separate the rare earths from each other.

Companies that buy these rare earths, including a few in Japan and the West, turn them into refined metal powders.

Besides these rare earth metals and a stunning amount of electronic components (commented on by FreedomLightbulb), LEDs also contain, depending on colour, other elements, such as indium, gallium, aluminium or zinc.

Plus arsenic, lead, nickel “and many other metals”, as reported earlier (emphasis added):

Oladele Ogunseitan, chair of UC Irvine’s Department of Population Health & Disease Prevention [] and fellow scientists at UCI and UC Davis crunched, leached and measured the tiny, multicolored lightbulbs sold in Christmas strands; red, yellow and green traffic lights; and automobile headlights and brake lights. Their findings? Low-intensity red lights contained up to eight times the amount of lead allowed under California law, but in general, high-intensity, brighter bulbs had more contaminants than lower ones. White bulbs contained the least lead, but had high levels of nickel. 

With incandescent lamps, it was just a glass bulb, a tungsten filament and an aluminium base…

…that produced an easily & beautifully dimmable, naturally warm light of the highest quality, power factor and all the rest. 

More on LED issues from ABC: Are LED lightbulbs worth the extra money?

Incandescent Home Lighting

In this post, I thought I’d share what kind of lights I use in my own home.

I use mainly incandescent light, but very little of it. As a principle, I only turn on as much as I need at any given moment. For maximum flexibility, I have many more light points than I generally use, so that there is always the right light for different moods, tasks, seasons and time of day. Here are some of them:

Ceiling spotlights with 3 x 40 W incandescent or halogen replacement reflector lamps. I have one of these in every room (3 sets in my L-shaped kitchen) but I only turn them on when cleaning, so they get used only a few minutes per week. They produce an excellent light for vacuuming, as they project the light down onto the floor.

2014-11-09 02.18.32

Around the living room, placed very low, I have several wall luminaires with 25 watt silver-top incandescent lamps for cosy ambiance without glare.

Over the sofa: a spotlight with flexible arm and 25 watt reflector lamp for reading.

In the Holiday season, I turn on the incandescent light strings I have fastened around the arched doorways.

2014-11-09 02.19.28

I also have a couple of salt lamps (made of real chunks of salt) with 15 watt mini bulbs inside. One in the living room and one in the TV room. Perfect for late at night when you want a dim, cosy and extra warm light in order to not suppress melatonin levels.

On the kitchen walls, I have 4 single spotlights, with 25 or 40 W incandescent or halogen reflector lamps. Some of them I’ve connected to a remote control for quick switch-on. These get used several times a day but only for short periods. (Lamp cables I’ve stapled to the wall with special U-staples designed for the purpose.)

Over the stove, sink and countertop I removed the ugly fluorescent tubes and put in 2 or 3 x 20 watt halogen under-cabinet luminaires. The one over the stove could not be screwed to the metal exhaust fan so I fastened it with self-adhesive velcro strips. These lamps get used only when cooking and washing up.

The bathroom already had 3 x 10 watt halogen downlights, which get nicely doubled by the large mirror. The only thing I miss here is a dimmer, as the light feels too bright late at night…

Edit: …so I bought a coloured LED strip that can be set to red in the evening (see Coloured LED review 2).

Red light (photo: Halogenica)

For safe navigation around the house during dark evening hours, I have window lights with 7 watt incandesent mini-bulbs in the most used rooms. Just enough light to see, and makes the rooms look cosy both from the inside and the outside. Here is the one in the kitchen.

For ambient room lighting in the study, I use a 35 watt halogen desk luminaire with built-in dimmer, adjusting the light level to suit mood, task and time of day.

If I need a brighter light, I turn on the other desk luminaire that takes up to 75 watts if needed. I currently use a clear 42 watt halogen energy saver, which gives a crystal clear, sunny bright white light. The wide shade spreads the light nicely over the whole desk and the construction is very flexible. (Used to have one of those asymmetrical desk luminaires popular in the 90s, but that was not half as useful despite its ridiculously high price.)

By the bed I have a similar but older model with narrower shade, onto which I mounted a dimmer when I rewired it. Not the most attractive contraption, but very practical. Can’t stand bright light right before bedtime so it’s perfect to be able to tune it way down to a soft, warm, almost candle-like light. When I want to read in bed, I just turn the 40 watt frosted incandescent bulb up a bit and adjust the flexible arm to just the right angle.


For safe navigation in the middle of the night I have a 1 watt orange LED nightlight (of the ‘golfball’ model described in my Coloured LED Review post). It has a built-in light sensor and turns itself off during the day.

Outdoors: Around the house I have wall lanterns with 60 watt decorative carbon filament lamps. These only get turned on when I’m outdoors at night, which is not that often.

For porch light I use a 53 watt halogen energy saver.

For driveway security light (connected to a light sensor) I use warm-white LED.

New EU Ecodesign Directive

Updated Dec 2012

Let’s look at the crucial parts of the European Union’s amended (Oct 2009) Ecodesign Directive:

5. Implementing measures shall meet all the following criteria:

Please notice the word “all”.

(a) there shall be no significant negative impact on the functionality of the product, from the perspective of the user;

• With CFLs, the user gets poorer quality light with suboptimal colour rendering (CRI 81-83 of 100), sensitivity to heat, cold, moisture and frequent switching (not recommended for bathrooms and shortly visited spaces); that may not fit well in many existing luminaires; is often incompatible with dimmers, (will fry existing electronics); may cause disturbances on the grid and use more power than marked watts; has recycling difficulties (being hazardous waste they must be taken to special recycling facilities, often reachable only by car, instead often contaminating other recycling materials); and risk of mercury contamination of one’s home if accidentally broken.

• With LEDs, the consumer gets a poorer quality, dimmer light with often strange light colour, dimmability problems, suboptimal colour rendering; extremely high purchase price and poor electromagnetic compatibility (may disturb the power grid and other electronic devices).

• With clear class C Halogen Energy Savers, you get good quality light but more glaring and can get very hot. Frosted would be ok but they were banned 2009. Clear class C halogen lamps will be banned 2016.

• With clear class B Halogen Energy Savers with integrated transformer; glare, higher EMFs, very high price, and not available on the market at all! The only European manufacturer who made these lamps for a few years, Philips, replied when asked a direct question, that that they have no plans on re-introducing this halogen lamp on the market, and that all R&D will go towards developing [the more profitable] LEDs.

–> Thus, this condition is not fulfilled.

(b) health, safety and the environment shall not be adversely affected;

CFLs can not be considered anywhere near safe for health or environment as long as they are breakable and contain highly toxic mercury vapour. Increased mercury mining in China due to rising demands from the West is causing an environmental disaster in AsiaCFLs  may also emit other carcinogenic chemicals and UV radiation (through cracks in the phosphor layer in the inside of the tube).

LEDs can also flickercontain toxic chemicals, emit potentially harmful amounts of blue light and cause health problems for a number of patient groups, as well as disrupt circadian rhythms.

As there are also many patient groups, an estimated 250 000 light sensitive people in EU which SCENIHR thinks will be adversely affected, and anecdotal evidence for even more patient groups reporting everything from subjective discomfort or serious illness in FL/CLF and LED light. Others have estimated that 2 million will be affected in the UK alone.

–> Thus, this condition is not fulfilled.

(c) there shall be no significant negative impact on consumers in particular as regards the affordability and the life cycle cost of the product;

• The reason standard CFLs are now more affordable, besides competition from poor quality no brand bulbs, is that they are often subsidised by tax moneyYour tax money. And you may also be paying an extra nominal fee on your electricity bill to compensate for the poorer power factor of most CFLs, LEDs and other home electronics. In both cases: whether you’re actually using them or not.

• Dimmable CFLs and LEDs are still prohibitively expensive to buy, even if they allegedly last longer. And most of the replacements don’t save as much as claimed, give as much light as the lamp they replaced, or last as long as promised. Burned-out CFLs often have to be delivered by car to special collection places, or to recycling stations for hazardous waste.

• Recovery of the higher purchase price is dependent on the product lasting as long as advertised, something which CFLs continue to fail even under optimal lab testing conditions, and even more so in real life conditions where they easily get overheated or get switched on-and-off more frequently than recommended etc. The promised life of LEDs still remains to be proven. As CFLs and LEDs become dimmer over time and some also change colour, they may neeed to be replaced even before they burn out prematurely.

• Savings are also 50-60% less in North Europe due to the scientifically established Heat Replacement Effect.

• The whole life cycle cost of the product typically never includes the mining of the mercury, phosphors and rare minerals in Asia, and all the cost to health & environment for the workers there. Nor for the shipping of the many electronic and chemical parts over Asia for assembly in a specific factory; shipping by polluting oil tankers from Asia to Europe; transport to recycling facility for toxic waste after the lamp has burned out; and then for the complicated recycling process to recover the mercury and cleaning the glass; and finally for depositing the mercury and other toxins as they cannot be exported from EU according to the RoHS Directive.

• If a CFL breaks in your home, you should first of all already have bought an expensive mercury spillage kit for safe clean-up. Then you may have to replace all carpets, textiles and other contaminated things in that room. If your children inhale the noxious mercury vapour, they may become sick and develop learning disabilities for life. What is the cost of all this?

–> Thus, this condition is not fulfilled.

(d) there shall be no significant negative impact on industry’s competitiveness;

(e) in principle, the setting of an ecodesign requirement shall not have the consequence of imposing proprietary technology on manufacturers; and

(f) no excessive administrative burden shall be imposed on manufacturers.

I’ll leave that part for manufacturers to comment, on the remote chance that they find anything to complain about, as the ban has been a direct result of their lobbying. But they have had to change the lamp labels to include much more information than earlier. And I believe leading lamp manufacturers hold most of the patents for creating decent LEDs.

= As A, B, C are clearly not fulfilled, the incandescent phase-out is invalid and should be revoked immediately. 

• Furthermore, naked tube & spiral CFLs for private use should be banned effective immediately, as they are a hazard to health and environment both! This is very urgent and imperative!

• LEDs should also be restricted to professional use only, due to the blue light hazard – which is greatest for children and certain patient groups – and/or only warm-white LEDs allowed on the market.

• A special ban on cool white/light blue lamps for vehicle headlamps is urgently needed for safety reasons, as glaring blue-white light is a very real danger to traffic and vision both.

• The old ineffective Mercury Vapour street lights should be banned according to schedule as there are more effective replacements with better colour rendition, such as ceramic metal halide.

All other gas discharge lamps should be permitted on the market in order to offer lighting designers and engineers a full range of options for various situations when lighting public spaces. Different environments call for different lighting solutions, optimised for that particular situation. Sometimes more quantity than quality is needed (e.g. in parks and attractive tourist areas), sometimes quantity and long life is the highest priority (e.g. for illuminating highways). Each type of lighting has its unique qualities and one lighting technology is NOT replaceable by another without getting completely different light qualities. Lighting designers know this and are well educated to choose the most optimal lighting technology for each situation.

Light is a bio-nutrient just like food, air and water, and good light quality should be a basic human right.  The quality, colour, colour rendition, direction and quantity can have a very profound effect on how a space is perceived, as well as direct biological effects on the endocrine system, vision, mood and performance on normal healthy people. Lighting is also one of the most potent mood enhancers at the disposal of an interior designer, architect or lighting designer.

Restricting choices for both professionals and for the general population is just wrong, unless a product is found harmful – such as the CFL and some LEDs.

Banning fire-based incandescent light in order to force everyone to use chemical-technical light is the equivalent of banning water in order to force everyone, including diabetics, to drink only Coca-cola when they are thirsty. That’s how big the quality difference is. Truly. Just check any manufacturer’s online catalogue. Even the best CFLs and LEDs for the consumer market only have 80% colour rendition (CRI) whereas incandescent and halogen lamps have 100%, just like sunlight.

Anyone can see this for themselves by taking a dark room and lighting it first with CFLs or LEDs (especially one’s that have been used for a few years) and then light that same room with only incandescent or halogen light and you will see that in the former you will strain your eyes to see anything through the dim, gloomy, greyish fog.  With incandescent/halogen light you will see and feel like letting in the sun on a cloudy November day; all colours will come alive and look more brilliant, and people will no longer have a sickly pallor.