EU Lamp Regulation Update

(Updated with amended infographics)

2015 was a sad year for incandescent light lovers in Europe. The EU Commission, rather than celebrating its victories in having forced EU citizens to replace so many of their top quality incandescent lamps with poorer quality CFLs and LEDs (and generated millions of Euros in revenue for lamp manufacturers) is instead hellbent on removing all remaining tungsten lamps, leaving only the synthetic alternatives.

This is the lighting equivalent of banning glass and permitting only plastic, or banning silk and permitting only polyester! It’s beyond absurd. 

Freedom Lightbulb on why lamp regulation makes no sense

The bad news:

1. Special purpose lamps will be more strictly regulated from 25 February 2016 due to a regulation amendment aug 2015 in order to close the last “loopholes” for incandescent-lovers. Decorative & carbon filament lamps that have gotten popular in restaurants etc. can not be called “special purpose” anymore and are thereby no longer included in the exceptions to the regulation. Rough Service lamps appears to be available but restricted (the wording is unclear). Remaining stocks can still be sold but no new lamps can be imported into EU or “placed on the market”. So it’s a good idea to stock up now if you can still find them.

Banned 2 Special Purpose

Commission Regulation Amendment of 25 aug 2015 (legal text)
Save The Bulb about the amendment

2. Incandescent and halogen reflector lamps will be banned from Sep 2016. So, start stockpiling if you appreciate their beauty, dimmability and broad usefulness at home.

Banned 3 Reflector lamps

3. The halogen energy savers phaseout, scheduled for 2016, was postponed until Sep 2018 – rather than to 2020 as the lighting industry requested, or scrapped altogether as some of us have suggested as the promised Energy Class B halogen to replace the Class C halogen no longer exists on the market.

Banned 4 Halogen

Commission article about the halogen ban 2018

The (possibly) good news:

1. Halogen G9 mini-lamps for mains voltage will still be available. They last longer than standard incandescent lamps and can be used in a conversion kit as incandescent replacement, which has the added bonus that the base and bulb E re-usable, and are available in a wide range of models: A-bulb (GLS), pear, candle, flame, golfball, PAR, globe, diamod etc; clear, frosted, tinted, dicroic, decorated etc. The base and bulb of course costs more than the old lightbulbs used to, but once invested in, only the inner bulb needs to be changed so it’s really eco-friendly. It’s also perfectly legal (for now, anyway, but there is the threat of another amendment yet to be voted on, so best stockpile G9 bulbs too).

Paulmann halogen conversion kits (German/international)
Lysman halogen conversion kits (Sweden)

G9 conversion manual

2. Just a few weeks ago it was announced that, by using nanotechnology, scientists at MIT have found a way of recycling the “wasted heat” [which of course is not always wasted…] of an incandescent lightbulb and focusing it back on the filament where it is re-emitted as visible light, making it 3 times more effective now, and in the future potentially even substantially more effective than LEDs. This possibility can mean a comeback for the incandescent bulb, if any manufacturer wants to invest in developing the technology. It certainly has huge market potentials as many of us still prefer those old “golden standard” lightbulbs to the new synthetic copies. This would also satisfy the EU Commission’s ever more stringent energy standards, as well as those of the U.S. and other countries.

New development could lead to more effective light bulbs
Save The Bulb comment on the new bulbs

3. Many online lamp shops in EU have remaining stocks of phased-out incandescent lamps. Markedly more expensive than they used to be, of course, but at least still available until stocks run out. (Importing from outside of EU is illegal.)

Banned 1 Incandescent

EU Halogen Ban Review

As described in detail by Freedom Light Bulb, the planned halogen ban 2016 is up for review on Monday 25th.

The recommended regulatory changes include:

1. changing the entry into force of the stage 6 requirements to 1 September 2018, allowing LED technology to mature further and reach an optimal time point in terms of monetary and energy savings;

2. removing the current loophole by extending the stage 6 requirements to halogen lamps with G9 and R7s socket;

3. and introducing a provision that luminaires sold after 1 September 2015 should be compatible with LED technology to prevent future obstacles to efficient lighting.

Even the lamp manufacturers themselves find this a bit extreme, as there are no good replacements for some lamps.

The reason for extending the ban to these previously excempt lamp models is that a small number of adapter kits exist which can turn a G9 mini bulb into a frosted incandescent bulb, and an R7 mini tube into a screw-in bulb. The latter is absolutely ridiculous, as such a contraption would not fit in any normal luminaire. These tubes are needed for halogen floodlights and torchieres, for which there are no replacement tubes at all, not even poor quality ones.

Here are 12 good reasons to keep all models of Halogen.

Edit: Kevan Shaw reports from Brussels: The latest from Europe

 

Heat Replacement Effect Again

Friday evening, something rare happened in conformist Sweden (where no article may be published without praising the politically correct lamps):

On prime-time national news, a representative of the Swedish Energy Agency (one of the strongest anti-lightbulb forces in Sweden*) was caught blatantly lying about the incandescent lightbulb. Can be viewed here for another 5 days (at 9:55 in the clip): Rapport 31 Aug, 19:30 My description, transcription and translation to English, reporter in green, his narrative in citation marks:

News anchor: From tomorrow the lightbulbs will be gone. The Energy Agency thinks this is an important measure for the climate and claims this will save energy comparable to the heating of 80 000 houses. But it turns out that the Agency uses exaggerated and outright erroneous numbers.

Cue Energy Agency representative Peter Bennich, turning on a an incandescent bulb:

– Well, this is a very nice light source, but unfortunately it uses a lot of electricity. So therefore it will be phased out. 

Then an elderly man in a lamp shop is interviewed while buying incandescent lamps:

– You’re stockpiling?

– Yes, absolutely! These modern lamps are so horrible, strange colours and… 

Clip new picture of lawn mowing.

“Environmental bombs like old lawn mowers and two-stroke engines are allowed but lightbulbs are banned.”

Back to Peter Bennich again (filmed at the Agency in front of a huge flat screen TV):

– They waste so much. It’s like buying 10 liters of milk and throwing away 9 liters every day.

“Only 1/10 of the electricity is of any use in a light bulb, the rest is pure waste. This is what the Energy Agency says.” (Document of the statement is shown.) “And this way we will save 2 TWh, 10% of the electricity in Sweden. This is the equivalent of 80 000 [electricity-heated] private homes they claim.”

– It saves at least 80% compared with the other lamp, says Peter Bennich again (likely referring to the CFL or LED).

“But something has been forgotten….”

Back to the man in the lamp shop:

– I have electric heating at home. The radiators turn on less frequently when I have the lamps lit.

“Lasse is quite right. If a lot of the of the electricity used for lamps is turned into heat, it logically follows that one can just turn down radiators a little instead. Most Swedish houses need heading, during most of the year anyway.”

Back to the Energy Agency and Peter Bennich again to check:

– Is it true that 90 % is pure waste? 

– Yes, that is my opinion. 

“In the Energy Agency propaganda incandescent bulbs are presented as only wasteful.” (A leaflet is shown.) “But the Agency has made their own calculations that show that throughout a whole year, not all but about 50% of the heat from the lightbulb is useful.”

Presented with this undeniable fact, Peter Bennich tries to spin it the other way:

– Well, it turns out then that max 50% of the heat from incandescent lamps are of any use… 

“Oops, earlier it was 10% that was useful. The truth was 50%! Which means that then the 2 TWh savings are not true, and not the other numbers in the information either. For those who want to save energy at home, there are much worse climate villains than the little lightbulb.”

Then the reporter presents Bennich with an infrared heater and a lightbulb, and turns up the heat in his questions:

– If I use this [lightbulb] as a reading lamp for half an hour every day for a whole year except June, or use this [infrared heater] for one evening, which uses most electricity?

Without even a second’s hesitation Bennich replies:

– The incandescent bulb! 

– No.

– Yes, Bennich insists.

“Wrong again. My reading lamp uses 2.7 KWh per year in my example. The patio heater uses 3.6 KWh after only 3 hours!” 

“But”, the reporter seems compelled to add (probably to not get in trouble with his superiors), “if you look at all of Sweden, the ban can still save energy.”

He then lets Bennich get the last word (despite just having proven what that word is worth):

– Lighting uses a very large part of electricity use in Sweden. 

– It sounds as if we are not very good at turning the lights off when not in use?

– Yes! We Swedes are extra poor at turning lights off. 

***  The End  ***

Fascinating, isn’t it?

Note how the Energy Agency representative is extremely careful to use the word ‘electricity’ rather than ‘energy’. That is a very deliberate  and well-coordinated strategy in order to make lighting part sound more than it is, as electricity itself is only a smaller part of total energy consumption.

It’s not a lie but it’s not telling the whole truth either. The largest part of most households’ total energy consumption is space heating (or cooling in warmer areas) followed by water heating. Lighting is only a small fraction of the remaining household electricity. EU average according to official statistics, is less than 3% of total household energy use – of which an estimated 46% was already fluorescent or halogen at the time of the ban (!) according to the preparatory study that was used as foundation for the ban (see my post EU Energy Statistics for details and references).

What is also deceptively concealed is the fact that the largest lighting part of national electricity use is in the commercial, industrial, public building and road illumination sectors, which use the most number of lamps, the highest wattages, and keep them turned on for most of the day or night. And most lamps in these sectors is already fluorescent or gas discharge! Some of them can still be optimised with newer and more efficient lamps of the same or similar lamp groups, better control systems etc, and by being turned off when not in use. That’s where the real savings on lighting can and are being made!

Whereas the private sector lighting use is such a microscopic slice of the total energy pie that it can easily be saved without banning any lamps.

I am sadly becoming more and more convinced that this whole lamp issue is just a diversion to keep us all believing that both we and politicians have really made a difference now by switching a few lamps. The planet is saved and we can all go back to sleep and keep consuming as usual. While the multi-billion-dollar CFL and LED industry is laughing all the way to the bank.

When the truth is that no one wants to rock the boat and start restricting the things that really pollute and deplete resources. Such as petrol-fueled cars & airplanes and the gazillions of electrical gadgets, clothes, trinkets and junk food we’re continuously being prodded to buy more and more of. No restrictions there.

__________________________

* The Swedish Energy Agency (STEM) has been leading the Swedish part of the global Market Transformation Programme (away from incandescent lamps) all through the 1990s until now. As I reported in The Global Anti-Lightbulb Campaign post, Kalle Hashmi, Executive Officer of Technology & Market Unit at the Swedish Energy Agency, in his Market Transformation Programme paper from 2006 admitted that:

STEM does not necessarily enjoy a commanding or trusted position vis-à-vis the consumers due to previous campaigns launched by STEM during the 90s. These campaigns may be summed as:

STEM engaged in ill conceived, inconsistent and ad-hoc promotions.
STEM did not take into account the consumer perspective but rather concentrated exclusively on energy efficiency and technical issues.
STEM relied indiscriminately on the information provided by the vendors.
STEM was very passive about dealing with CFL technology failures that affected main benefit claims.
STEM did not study, did not know or admit technology limitations.
STEM did not demand or work to establish minimum performance requirements.
STEM never questioned why long life claims were not backed by a guarantee.

And it seems that they’re still at it…

Incandescent Light Quality

Bye Bye Light Bulb – Do NOT Rest In Peace!

Now the last standard incandescent bulbs (15W, 25W, 40W) are banned from production and import in the EU. Remaining stocks may still be sold. Small special lamps, some decorative and rough service lamps will still be available (see Freedom Lightbulb for details). Reflector lamps will be restricted from next year and most incandescent halogen lamps from 2016.

This is truly sad because there is NO replacement for incandescent light quality, because the alternatives do no not produce light by incandescence (glow) but by technical, electronic and chemical processes which create radically different light properties, besides containing both more electronics and more potentially toxic, environmentally destroying or rare and expensive substances.

Here I’ve made a rough overview of lamp types family tree:

Whereas standard incandescent lamps and halogen incandescent lamps can be said to be ‘siblings’, all other lamp types have nothing more in common with incandescent lamps than being powered by electricity.

So, no matter how much effort is put into creating a phosphor mix that will superficially look more or less incandescent-like, it will just never be the same because it is a chemical composite light, a sort of digital soul-less light, totally lacking the warm natural glow of incandescence.

Banning a top quality product in favour of totally different and quality-wise inferior products is like banning wine with the argument that “wine-lovers can just as well drink cider, practically the same thing” because both are mildly alcoholic beverages with a superficial similarity. Or banning silk because there are micro-fibre materials with a silk-like look – everyone knows it’s not the same thing! Both have their respective uses and both should naturally be available on the market unless harmful.

What’s so special about incandescent light then?

Incandescent light (along with sunlight) is the ‘gold standard’ against which all other types of light is measured (even according the Global Lighting Association, p. 10 in this document). This is why so much effort has been put into trying to copy its light colour, colour rendering capacity, dimmability, heat- & cold resistance, perfect power factor and other unique qualities – without ever having hope of succeeding on more than the most superficial levels, because:

• Unlike other artificial light sources, incandescent and halogen lamps are tungsten black-body radiators, a safely contained and electrically amplified version of the same fire-light which humanity has evolved with since fire was first discovered. Lighting designer Ed Cansino in a highly informative interview:

“…if I were forced to choose the best lighting for residential overall, it would have to be incandescent. I feel that we as humans have had a deep connection to flame for many thousands of years. It’s almost like it’s in our DNA. It’s interesting that as time moves on, people are still drawn to sitting around the camp fire, a fireplace, even a barbecue. Think of a Yule log. It’s just that this particular quality of light is ingrained in us. You can even get a screen saver of log flames. Incandescents with their glowing filaments are a form of flame and are thus an extension of this inborn affinity that we have for fire.”

(photo: ALAMY, source: www.telegraph.co.uk)

• Incandescent light colour follows the Planck curve so that when dimmed or used at lower wattages, the light colour gets proportionally warmer and more candle like. Increase brightness or use a higher watt lamp, and it gets whiter again. This is how a natural light source behaves. Whereas LED and CFL gets more blue, green or grey, even if they were reasonably warm-white at full power. Example of how an incandescent (left) and an LED (right) looks before and after dimming in a Consumer Reports test lab video from KOMO News (click on link to see full video, these are only snapshots):

Incandescent & LED full power
(source: http://www.komonews.com)

Incandescent & LED dimmed(source: www.komonews.com)

Incandescent & LED dimmed
(source: http://www.komonews.com)

• Like natural daylight, incandescent light has the highest possible colour rendering (CRI 100) due to naturally continuous spectrum, and a warm-white, human-friendly light which radiates and makes colours come alive (unlike the duller light from CFLs and LEDs with CRI just over 80).

Strawberries (source: http://www.cielux.com)

Ron Rosenbaum describes it more poetically:

I’ve tried the new CFLs, and they are a genuine improvement—they don’t flicker perceptibly, or buzz, or make your skin look green. There is a difference, and I’d be in favor of replacing all current fluorescent bulbs with CFLs. But even CFLs glare and blare—they don’t have that inimitable incandescent glow. So don’t let them take lamplight away. Don’t let them ban beauty.

Don’t get me wrong, this is not a plea for Ye Olde Times, for gaslight and quill pens. It’s just a plea not to take for granted the way we illuminate our world. Not all change is improvement. Why do I put such a premium on incandescence? For one thing, I am a bit romantic about it. A lamp fitted with an incandescent bulb and dim translucent shades casts a lovely, painterly glow on human faces, while the light of fluorescents recalls a meat locker.

Why do you think there is such artistry to so many lampshades? They are the lingerie of light.

But the appeal of incandescence is not just a matter of romance. I suspect there are also answers to be found in the physics and linguistics of incandescence.

I’d speculate that it has something to do with the different ways light is created by incandescents and fluorescents. Incandescent light is created by heat, by the way an electric current turns a thin metal filament (usually tungsten) red then white hot in a transparent or translucent globe filled with an inert gas that prevents the filament from burning up, allowing it to give off a steady glow. (That explains the warmth: The fact that incandescence emanates from heat creates warmth, distinguishes it from the cold creepiness of fluorescence.)

Fluorescent light bulbs, on the other hand, are coated inside with chemical material that lights up as energy reaches the tubes. (It’s a bit more complicated than this, but that’s the general idea.) Fluorescents sometimes appear to flicker because alternating current brings that energy to the bulbs in pulses, rather than steadily. In incandescents, the hot filament stays hot—and therefore bright—despite alternations in current; it can’t cool fast enough to dim or flicker.

The new CFLs pulse faster than their ancestors, so the flickering is less perceptible, but at some level, it’s still there. CFL manufacturers may be right that the new bulbs are an improvement, but there is still something discontinuous, digital, something chillingly one-and-zero about fluorescence, while incandescent lights offer the reassurance of continuity rather than an alternation of being and nothingness.

Who wants to have a romantic dinner in the dull gloomy light of a CFL or LED? I’ve been to such restaurants and it was just awful!

Halogen-lit restaurant in Waikiki
(source: http://www.chefmavro.com)

And why do lighting designers or business owners often choose soft warm incandescent lamps or bright glittering halogen spotlights in hotels, spas, reception areas, high-end boutiques etc? Because they are well aware of the fact that no other light can create such attractive, intimate, relaxing or luxurious-looking environments.

Halogen-lit jewellry store
(source: http://www.pdmurphyjewellers.com)

Leaving many in the dark

There are both visible and measurable differences in quality between incandescent light and the light from even the best CFLs and LEDs on the market, well known to the lighting industry and documented in their own technical specifications.

If there is a more efficient product within the same group, that has exactly the same properties and not just similar (including spectral power distribution, colour rendition, power factor, glare safety, price, fit, availability, functionality etc) a ban might be tolerable if not acceptable. But you cannot reasonably replace a product from one group with a product of a completely different technology without getting something altogether different. Some may not mind the difference, but for those who do, the original, higher quality product must remain available.

Also, there are many sensitive people in general and light sensitive people in particular who experience everything from discomfort or dislike to severe symtoms from the recommended alternatives. There are also the elderly to consider. Even the extremely pro-ban Swedish Energy Agency (STEM) representative Kalle Hashmi earlier pointed out that:

When you get older, 60+, you need more light to be able to see, and our ability to distinguish colours and contrasts diminishes. Then we need to choose a light that solves all three problems. When in a situation where colour rendition is very important, where you need to match colours, then it is very important to use a mains voltage halogen lamp because it has much better colour rendering capacity. It can be a situation like cooking, where all colours seem matte to the eyes. So what an elderly person perceives as ‘brown’ may actually be burnt. With halogen you see better.

In other words, incandescent light. The banning of frosted incandescent and halogen replacement lamps already creates a lot more glare – something the ageing eye is also more sensitive to. So what will the elderly or vision impaired do when halogen incandescent lamps are also banned? And all those of us who simply enjoy beauty and warmth and who prefer to save by dimming or switching lights off when not in use, rather than compromise on quality?

Not to mention artists, photographers, designers and many other groups dependent on perfect colour rendition to be able to do their job.

Update: This song perfectly captures how many of us feel:

FL/CFL or LED light may have its use where lamps are left on all day and quantity matters more than quality, e.g. at work, in public building corridors etc, but not necessarily in all retail, hospitality or domestic environments where consumers expect a more attractive and/or relaxing light. There is certainly no, even remotely similar, replacement for the romantic glow of the ‘carbon-filament’ type decorative bulb often used in restaurants, for example.

Light is like air, food and water – it is essential to our well-being. And quality matters!

In the words of lighting designer Howard Brandston:

Human beings evolved with and in response to light—sunlight, moonlight, the incandescence of fire. Our physical mechanism, the neuroscience that makes us who we are, is exquisitely attuned to light’s qualities and rhythms. The light that envelops us steers our very existence. To impose limitations on how we choose to illuminate our world carries profound biological implications.

Lighting is one of the most powerful mood-enhancers, can markedly affect how environments are perceived, as well as both comfort, well-being and health.

This is why many lighting designers are upset over being robbed of one of the many tools of their craft. It is their job to create the most optimal lighting environments where energy use, cost, quality, quantity, desired functionality, mood etc are all factors to weigh against each other for each unique situation, which they, unlike politicians, are well educated to do.

Lighting designers against the incandescent ban

IALD – International Association of Lighting Designers
IALD Statement

Jeff Miller, President-elect IALD, Director of Pivotal Lighting, statement

PLDA – Professional Lighting Designers’ Association
PLDA Statement

Kevan Shaw Lighting Design, PLDA Director for Sustainability
Summary of points against the CFL Save The Bulb blog

Michael Gehring, Principal of KGM Architectural Lighting
Gehring statement

Scott Yu, Principal, Chief Creative Officer of Vode Lighting
Yu statement

Howard M Brandston, FIES, Hon. FCIBSE & SLL, FIALD, LC
Brandston Statement

SaveTheBulb also lists Artists against the incandescent lamp ban

 

 

Ban The Ban – Sign The Petition!

EU incandescent ban

Now it has been three years since the first step of the incandescent phase-out was enforced in the European Union. In a few weeks, the last of the regular incandescent bulbs, 25 and 40 W, will be prohibited from production and import into the European Union. Remaining stocks may be sold until they run out. Next year reflector lamps are up for restrictions and 2016 most halogen lamps will be banned.

Was this a good idea?

Evidence is mounting that this was a very poor decision.

But CFLs are so great?

Since the ban, we have had a never ending flow of reports on CFL issues, from dimming problems, slow start-up time, poor performance at cold temperatures, lamps burning out prematurely, starting fires, emitting UV, radio frequencies and causing disturbances on the grid. Plus consumer tests showing much still to be desired when it comes to producing promised brightness etc.

And worst of all: Chinese workers and environment poisoned to produce ‘green’ lamps for us, risk for toxic contamination of your home, poor recycling rates, and recycling plant workers at risk from people throwing CFLs in glass recycling bins.

But incandescent lamps use more mercury than CFLs..? 

No, they don’t. This clever PR lie was invented in 1993 by the EU-funded anti-lightbulb lobby organisation IAEEL and based on a fantasy calculation exercise at a Danish university in 1991, with an imaginary scenario of a CFL containing only 0.69 mg mercury (impossible to attain at that time, and still is), while electricity production from coal was assumed at a whopping 95% (as was the case in Denmark at that time but nowhere close to true for the rest of EU then, and even less so today). 

So poof, the main argument that has gotten environmentalists, politicians, journalists and the general public alike to believe a mercury containing product is the best product for the environment, has no substance at all. 

See my Mercury posts for details and references on mercury issues above.

See also Good Greek Philosophy

But what about LEDs?

LEDs (and OLEDs) are great for TV and computer monitors, for coloured Christmas decoration, signal lights, possibly road illumination, stage lighting, spectacular lighting design (such as could be seen during the last Olympics) and many other creative purposes, just not as replacement bulbs for home illumination. Even industry leaders don’t seem to believe in that concept, as they know of the many challenges and that this is not the area in which LEDs perform best.

Most LED replacement bulbs available to consumers today are a joke when it comes to light colour, output and price. There are a few decent looking ones from top brands, but the prices on those are even more of a joke, and how long they last and give a useful light is still unknown. Many have electromagnetic compatibility (EMC) issues and may cause grid disturbances. Most are not dimmable, and the ones that are do not dim well.

But what about halogen energy savers?

Well, they give the same type of top quality light, can be dimmed nicely and have all the other advantages of incandescent light, plus longer life. But recent consumer tests disappointingly show that they don’t save as much as promised. They also contain bromine or iodine and can be quite glaring unless shaded or frosted.

Unfortunately, frosted bulbs were also banned by the EU in the first stage of the phase-out 2009, due to wanting to force the majority who likes frosted glare-free lamps at home to buy CFLs instead – that was the whole point of the ban. (Not that CFLs are always glare-free, but they can pass for ‘frosted’ by their phosphor coating.)

That the halogen energy saver is still permitted for a few more years was a temporary compromise, as there exists no clear bright point replacement for when such is desired. Its existence on the market – although at first, very hard to find – has been used by the Commission to stifle all the numerous complaints about CFL shortcomings: “But for those applications, you can use a halogen energy saver!” What the commission doesn’t tell the general public is that halogen lamps will also be banned – unless this regulation hysteria is put to a halt by EU citizens!

Time to ban the ban!

Freedom Lightbulb explains How bans are wrongly justified. Quoting from just one of the many excellent points:

CFLs are simply not suitable for all locations and uses: Hot or cold ambience, vibration, dampness, enclosed spaces, recesses, existing dimming circuits, timers, movement sensor switching, use in chandeliers and small and unusual lamps, aesthetical use if clear bulbs are preferred, rare usage when cheaper bulbs are preferred – and so on – apart from light quality differences, particularly noticeable when dimming. Usage in children’s rooms might be restricted on breakage and mercury release issues, see point 10 below.

LEDs offer an alternative choice especially for directional lighting – but otherwise, with several similar location and usage issues to CFLs, as well as having their own light quality issues in spiky emission spectra. LEDs also have even more light output problems than CFLs to achieve bright (75-100W and over) omnidirectional lighting equivalence, and at reasonable cost.

To put it bluntly:
Incandescent technology is optimal in BULB form,
Fluorescent technology is optimal in TUBE form,
LED technology is optimal in SHEET form.
Fluorescent and LED lighting technology advantages are compromised in trying to replace what incandescents can do.

You don’t make savings by regulating what products are on the market – unless they’re toxic, then you remove them for environmental and health reasons. You do it by using the appropriate lamp type and brightness for a particular environment and task, and by tuning it down or switching it off when not used. Lighting designer Kevan Shaw points out the obvious in Ecodesign Regulation Failure? (emphasis added):

As has been shown in previous studies the amount of lighting energy used in households is far more dependent on behavior than the type of lighting equipment used. Ultimately the length of time a light is left switched on has significantly more influence on total energy used than the wattage of the lamp. Another interesting point is that the proportion of electricity used in households for lighting is now being overtaken by that used for Audio Visual and Computers in the home. Despite this no one so far is proposing that plasma large screen tellys are banned in favour of LED types that use a fraction of the electricity!

Also, you can make an incandescent or halogen incandescent both use less electricity and last longer by simply dimming it – something many are already doing! Jim on Light:

Dimmer maker Lutron says that by dimming a halogen lamp by 30% will give you many of the same benefits as using a compact fluorescent lamp.  Lutron also says that a 3,000 hour halogen lamp will last 12,000 hours when dimmed by that 30%.

As Freedom Lightbulb frequently points out: people are not stupid. If there was a better product that truly saves both money and the environment and last as long as promised, we would buy it without being forced. We gladly buy energy-star fridges and washing machines. We have willingly followed energy authorities’ advice on better insulation of our houses; taking a shower instead of a bath; switching appliances off instead of leaving them on stand-by; turning lights off when leaving the room; installing sensors, timers and dimmers. We recycle and try to be as green as we can manage and afford.

All EU authorities need to do is enforce the energy and performance information on the package label, make tests to check that it’s accurate, and leave us all free to make our own informed choices on what we want to spend our hard-earned money on.

The market failure of incandescent replacements is a product failure, and banning the original high quality product in order to force an unwilling public to pay more for a problematic and lower quality replacement is just too absurd for words!

Save the bulb – sign the petition!

Here is a German petition to revoke the ban. It’s not very well written, but please sign anyway – every vote counts:

-> Avaaz petition to repeal the EU ban

Edit: Two more German petitions to sign (thanks to Lighthouse for the links):

http://www.gopetition.com/petitions/pro-gluhbirnen.html
https://www.openpetition.de/petition/online/aufhebung-des-gluehbirnenverbots

Update: The incandescent ban is actually illegal as the replacement lamps have not fulfilled criteria a, b and c in the Ecodesign Directive. Se my updated post New EU Ecodesign Directive

EU Light Regulations Expanded

Updated Aug 20

Translated and condensed from Swedish Energy Agency’s website.

Reflector lamps, LED and halogen

Now LED and reflector lamps will be included in the regulation and energy label reqirements.

On July 13, the Committee for Eco-design agreed on the regulation proposal for reflector lamps, LED lamps and related equipment. If accepted, the new requirements will take effect from September 1, 2013. With this new regulation virtually every light source is covered, as the requirements for omnidirectional, road and office lighting is already in place.

The new requirements are introduced in four stages so that manufacturers, importers, retailers and consumers will have time to convert:

Step 1: September 1, 2013 
Between Steps: March 1, 2014 
Step 2: September 1, 2014 
Step 3: September 1, 2016

The requirements set for reflector lamps such as halogen lamps (230 V and low voltage), discharge lamps and LEDs. Omni-directional LED bulbs, which previously only had the energy efficiency requirements, are now also included, as well as related equipment, i.g. the driver and controllers for lighting.

OLED lights are still excluded because this technique is still regarded as immature, but may be included in future revisions of the regulation. 

The regulation includes both energy efficiency and function. Typical performance criteria are longevity, number of ignition and extinction cycles, start time and color capabilities. In addition there are demands for expanded information about the light that should be on the lamps themselves, packaging, and specific sites. This makes it easier for both common and professional users and clients in the selection of lighting solutions.

It seems then, that the original time table for different lamps, as described in my 2009 ban summary, is being kept by the EU. Meaning that from 2016, all halogen lamps must be Energy Class B, which only the very expensive Philips halogen bulb with infrared coating and integrated transformer achieves. And that lamp is currently nowhere to be seen… (I managed to locate one in a small special lamps shop in Stockholm a couple of years ago and it was nice and bright but didn’t last very long.)

This may mean that all the mini halogen bulbs for low-voltage reflector lamps are also banned from that date! The industry wants to see all halogen lamps gone and replaced by much more profitable CFLs and LEDs, and EU politicians willingly oblige. Some of the more attractive metal halide lamps that have made many shops more brightly and beautifully lit since the 90’s may also be at risk. But no one is really sure exactly which lamps will be removed, even professional lighting designers are being kept in the dark! And possibly for quite appalling reasons:

From PLDA Greenpages (emphasis added):

The current draft legislation for reflector lamps, the final draft of which is dated January 2012, will result in the phasing out of several types of lamps, with mains, low voltage and metal halide reflector lamps most likely to be affected. The signals are clear that there will be significant reductions in the availability of these lamps from September 2013, with further reductions scheduled for 2016.

The concern is that specification of these lamp types could lead to a risk of Professional Indemnity Claims if said lamp types could not be provided for installation after September 2013.  Specification of products which then become unavailable from September 2013 would likely result in claims from clients regarding delays and mis-specification.

The main problem is that there is insufficient data available to determine exactly which lamps will be phased out, the specification of which should be avoided accordingly, as manufacturers and legislators have not, at the current time, provided the necessary information.

Changes in Reflector Lamps Legislation may prove problematic for Lighting Designers

This seems to be quite in line with EC behaviour openly on their website too. For the general public, one graph is provided that makes it seem like halogen energy savers (class C ‘improved incandescent bulbs’) will be permitted indefinitely, while the timeline in the information material for professionals tells another story.

Public timeline from Changes – bulbs and packaging

Professional timeline from Frequently asked questions

Tighter standards & new labels

Looking at this last regulation installment, one thing that strikes me is the stunning amount of regulation and label info needed for CFLs and LEDs to cover all the technical issues they have, in order to produce just a little more light per watt:

(a) Nominal useful luminous flux displayed in a font at least twice as large as any display of the nominal lamp power;

(b) Nominal life time of the lamp in hours (not longer than the rated life time);

(c) Colour temperature, as a value in Kelvins and also expressed graphically or in words;

(d) Number of switching cycles before premature failure;

(e) Warm-up time up to 60% of the full light output (may be indicated as ‘instant full light’ if less than 1 second);

(f) A warning if the lamp cannot be dimmed or can be dimmed only on specific dimmers; in the latter case a list of compatible dimmers shall be also provided on the manufacturer’s website;

(g) If designed for optimum use in non-standard conditions (such as ambient temperature Ta ≠ 25°C or specific thermal management is necessary), information on those conditions;

(h) Lamp dimensions in millimetres (length and largest diameter);

(i) Nominal beam angle in degrees;

(j) If the lamp’s beam angle is ≥90° and its useful luminous flux as defined in point 1.1 of this Annex is to be measured in a 120° cone, a warning that the lamp is not suitable for accent lighting;

(k) If the lamp cap is a standardised type also used with filament lamps, but the lamp’s dimensions are different from the dimensions of the filament lamp(s) that the lamp is meant to replace, a drawing comparing the lamp’s dimensions to the dimensions of the filament lamp(s) it replaces;

(l) An indication that the lamp is of a type listed in the first column of Table 6 may be displayed only if the luminous flux of the lamp in a 90° cone (Φ90°) is not lower than the reference luminous flux indicated in Table 6 for the smallest wattage among the lamps of the type concerned. The reference luminous flux shall be multiplied by the correction factor in Table 7. For LED lamps, it shall be in addition multiplied by the correction factor in Table 8; 

(m) An equivalence claim involving the power of a replaced lamp type may be displayed only if the lamp type is listed in Table 6 and if the luminous flux of the lamp in a 90° cone (Φ90°) is not lower than the corresponding reference luminous flux in Table 6. The reference luminous flux shall be multiplied by EN 22 EN the correction factor in Table 7. For LED lamps, it shall be in addition multiplied by the correction factor in Table 8. The intermediate values of both the luminous flux and the claimed equivalent lamp power (rounded to the nearest 1 W) shall be calculated by linear interpolation between the two adjacent values.

If the lamp contains mercury:

(n) Lamp mercury content as X.X mg;

(o) Indication of which website to consult in case of accidental lamp breakage to find instructions on how to clean up the lamp debris.

So, 16 different parameters to learn and keep in mind, plus websites to consult for safety instructions, just to buy a simple lightbulb!!

When buying an incandescent bulb, all you needed to know was watts and type of base.

All incandesent bulbs switched on immediately; worked with timers, dimmers and sensors; dimmed beautifully; worked just as well in the oven as in the freezer; worked in any position; power factor was perfect; colour rendering was perfect; light colour adjusted itself perfectly along the Planck curve according to brightness; life span was predictable and was not shortened by switching it off within 15 minutes of use. You knew that if you wanted to save energy, you either dimmed the lamp or simply turned it off when not needed.

And when producing it, you stuck a piece of tungsten in a glass bulb, put a metal screw base on it, replaced the air with some inert gas and that was it. Easily done in a local factory.

You did’t have to go mine for toxic metals and phosphors, manufacture various components all over Asia and then ship them to China for assembly, then ship the finished lamps to Europe, then collect them again after use to recycle the toxic elements. Or keep tweaking it for 3o years to get it to only almost resemble incandescent light, almost give as much light as promised, and almost (but often not) last as long as promised, while still having all those issues that the EU Commission now finally sees fit to regulate and require on the label.

Don’t get me wrong. I think it’s excellent that this info is now required on the label! That’s what national and federal authorities should be there for, to keep the free market in check and make sure it delivers what it promises. These mandatory labels should have been required years ago, but then the Committee either didn’t know about all these issues or chose to ignore them. I only hope these requirements will be forecefully enforced, with regular tests and fines and sales bans on any lamp that doesn’t live up to its label info.

But legislating on product labels and doing quality controls is one thing. Banning safe and popular products is truly taking things to extremes.

Link to EC label guide for consumers: How to read the new information displayed on light bulb packaging

See also Freedom Light Bulbs post about the new labels.

The Bizarre Ban

Back to researching & blogging after a month of well needed rest…

The EU incandescent ban

The first phase of the absurd incandescent ban has now taken effect.

* As of this month it is now illegal to produce and import 100W incandescent bulbs and frosted incandescent bulbs. And frosted Halogen Energy Savers!

(Selling already existing stocks is still permitted.)

The regulation also includes requirements for new product information on the packaging for all lamps (which I think is a good thing that should have been required long ago).

Manufacturers support this phase-out. “We are very positive”, says Magnus Frantzell, CEO of the Swedish Lighting Manufacturers Association to Expressen. Well, what a surprise…

But it will not stop here. This is the full schedule:

* 1 September 2010: clear 75W (over 750 lumen) lamps will be banned (through minimum efficiency requirements).

* 1 September 2011: clear 60W (over 450 lm) lamps will be banned.

* 1 September 2012: clear 7W-40W (over 60 lm) lamps will be banned.

* 1 September 2013: tightened standards on CFLs and LEDs. No lamp type will be removed from the market, only lamps with poor performance. Possibly non-dimmalbe lamps will be banned.

* 2014: Review of the regulations by the EU Commission.

* 1 September 2016: tightened standards for clear halogen lamps. Only energy class B halogen lamps (C for some special cap lamps) will be permitted, which currently only the super-expensive IR halogen lamps with integrated transformer reaches. All other halogen lamps will be banned! [1]

Exceptions: “special-purpose lamps designed essentially for applications such as traffic signals, terrarium lighting and household appliances and clearly indicated as such on accompanying product information are not subject to these eco-design requirements.” Examples of special-purpose lamps: aquariums & terrarium lamps; germicidal lamps, lamps for display/optics; stage, studio, TV & theatre lamps; photo flash lamps; projection lamps, IR lamps; traffic signal lamps for roads, trains & aviation; car headlight lamps; oven & fridge lamps; temperarture- & shock-proof lamps; mirror lamps. [2]

Street, office & industry lighting

Somehow, without any public debate whatsoever, it seems that the EU Commission has also just snuck through a regulation on office, industry and street lighting. [4, 5]

* 2010: Phase out of T8 halophosphate fluorescent tubes (through minimum efficiency requirements).

My comment: This is good as they are not very efficient, contain more mercury, often flicker due to old type magnetic ballasts and the poor-colour-rendering light truly sucks. Should have been phased out decades ago.

* 2012: Phase out of T12 fluorescent (FL) tubes.

My comment: This is probably good too, although it will require many businesses to purchase new fixtures for the thinner, more efficient tubes with HF-ballasts.

* 2012: Phase out of high-pressure sodium (HPS) standard quality lamps (only E27/ E40/ PGZ12 affected).

My comment: This is acceptable as long as there are better quality lamps of the same type available. Not acceptable if it includes the decorative frosted incandescent-like lamps used in parks and Old Town-environments across Europe. These are somewhat less efficient but are needed for sensitive environments. Quality vs quantity. It cannot all be about quantity of light, we also need quality of life.

* 2012: Phase out of less efficient metal halide (MH) lamps (only E27/E40/PGZ12 affected).

My comment: Again fine, if there are better lamps of the same type still available.

* 2014: Review of the regulations by the EU Commission.

* 2015: Phase out of High-Pressure Mercury (HPM) lamps.

My comment: Excellent! Should have been banned decades ago, as soon as there were HPS or MH replacement lamps available for the same lumnaires. HPM lamps are most commonly used as street lights in cities. They give a truly horrid purple-white light which tends to turn green with age, contain more mercury than other lamps and are markedly less efficient than HPS, MH and CMH lamps.

The new warm-white Ceramic Metal Halide (CMH) are about twice as efficient and give a very incandescent-like light: truly great for street & park lighting.

* 2015: Phase out of plug-in/retrofit high-pressure sodium lamps (= direct replacement for HPM). Plug-in lamps must correspond to Super/Plus HPS level; almost all plug-in/retrofit lamps will be banned.

* 2017: Phase out of Poor performing metal halide (MH) lamps: (only E27/E40/PGZ12 affected).

My comment: Seems that the EU consultants and Commission are hell-bent on removing any light from the market that is remotely attractive and human-friendly. Warm-white MH lamps, and improved colour HPS lamps are the most incandescent-like alternatives after halogen. Phasing out these lamps may mean that there will be no frosted HID lamps left on the market, despite their usefulness commercially indoors. The Eco-design group does not care how the lamp is used, light quantity at all cost is their only goal.

It also means that every EU country will be forced to replace the whole street luminaire when stocks of replacement lamps run out. This will be good for the environment but may be more costly than some countries or counties can afford. Why not instead give special EU grants or other incentives to those who install the most energy efficient technology available, instead of removing whole lamp groups from the market??

Reflector lamps

As mentioned earlier in this blog, reflector lamps is the next group up for slaughter. [6] Preparation is going on currently and decision will be taken next year.

Halogen replacement bulbs for spotlights, floodlights and downlighters are at high risk of being recommended for phase-out, making millions of expensive desklights, spotlights and recessed luminaires useless as there are no CFL or LED alternatives for these tiny bulbs or tubes. Great for the luminaire market but not so great for the individual home owner who may have invested a gread deal of money into installing recessed fixtures etc.

Professional lighting designers despair at the thought, as should many galleries, shops, restaurants, hotels etc. as they will then no longer be able to create the uniquely luxurious and attractive lighting environments for their customers, made possible only with halogen spots.

If the lobbyists that keep pressuring the EU Commission into such follies have their way, we will be facing a very cold, dull and drab lighting future.

The logical thing to do would be to ban only the poorest performing lamps in each lamp group, since each lamp type has its own unique qualities that oftan cannot be replaced by another lamp type (the only exception being HPM lamps for which replacement with HPS, MH or CMH is an improvement both quality- and quanlity-wise).

* As no other lamps can replace small halogen bulbs for reflector lamps, neither quality-wise or size-wise, only the poorest performing in this class should be banned, not the whole group.

* As frosted incandescent lamps cannot quality-wise be replaced by anything but frosted halogen lamps, the ban on the latter should be lifted.

1. New EU directive: Say goodbye to the light bulb (Osram summary)
2. EuP Directive About Non Directional Domestic Lighting (detailed slide show)
3. EU directive – special purpose lighting (Osram summary)
4. EU directive – street, office and industry lighting (Osram summary)
5. Commission Regulation (EC) No 245/2009 of 18 March 2009 (original document)
6. Spotlight and downlighter bulbs next to be banned by EU

EU Technical Briefing Analysis

The Technical Briefing used as foundation for the EU decision to phase out incandescent bulbs – and eventually some halogen lamps – contains a number of seriously misleading statements which seem to be copied straight from a standard lighting industry PR-brochure.

Let’s look closer at some of the most crucial statements in it:

Household ‘Electricity’ vs ‘Energy’

“Lighting may represent up to a fifth of a household’s electricity consumption.”

This statement is a truly ingenious, or rather disingenuous, PR-phrase, invented in early 1990s and cleverly designed to grossly mislead without actually lying. What is conveniently not mentioned in it is that household electricity is often only around 20% of a household’s total energy consumption. 20% of 20% is only 4%!

Update/amendment June 4: Combining the EU Commission info on lighting share of household electricity [1] with Energy Statistics from EuroStat [2] it turns out that in EU-27 lighting is a mean of 10% of home electricity and 2.94% of total home energy use.

“There is a four to five-fold difference between the energy consumption of the least efficient and the most efficient lighting technologies available on the market. Today, the most energy efficient bulbs are compact fluorescent lamps. They achieve Class A according to the EU energy label on household lamps, while incandescent bulbs are class E or worst.”

Only in theory (see CFL Analysis for details and Summary).

“This means that upgrading the lamps could reduce a household’s total electricity consumption by up to 10-15% and save easily 50€ / year (taking into account the purchasing cost of lamps).”*

But if lighting is only an average of 10% of household electricity to begin with, only around 50% is incandescent, and CFLs save at best 75% of those 5%, how can one save 10-15% of household electricity by switching to poorer quality lamps??

*”Assuming 20 lamps in the household, which are initially all incandescent lamps and changed to compact fluorescent lamps of equivalent light output.”

This might have been true back in the 90s when this argument was still fresh. The preparatory study by EU’s own consultants – presumably the same consultants who wrote the technical briefing?? – showed that the share of household incandescent lamps has decreased from 85% in 1995 to only 54% in 2007 (and were expected to continue dropping, even without a ban). [2]

And having lamps installed does not mean everyone is using them every day, or for long periods of time. With all the energy saving information and rising electricity prices, one may safely assume more people have learned to turn off lights in rooms they don’t occupy. Many also have dimmers, sensors and timers installed and may already have reduced their lighting consumption to a necessary minimum.

Authors of this briefing may also have failed to take into account the number of people who absolutely hate CFLs and have already started stockpiling incandescent bulbs to last for many years ahead! [3, 4, 5]

“In the context of the commitment of European leaders to reduce primary energy consumption by 20% compared to projections for 2020, the Spring European Council 2007 invited the Commission to “rapidly submit proposals to enable increased energy efficiency requirements (…) on incandescent lamps and other forms of lighting in private households by 2009″. The emphasis on lighting was further supported by the European Parliament.”

Something is not right here. If EU legislators have been led to believe that 10-15% of domestic energy consumption can be saved, this peculiar focus on lighting is more understandable.

But when lighting is only around 3% of domestic energy comsumption and incandescent lighting in turn only half of that = 1.5% and what can realistically be saved is less than 0.25% of total EU energy use, this controversial decision makes a lot less sense. If I were a member of the EU Committee or Parliament, I’d be outraged at having been given misleading information to base decisions on!

Mercury

For the technical briefing misinformation about CFL mercury impact, see my Mercury posts.

Lamp Descriptions

Under the heading “Lamp types and their pros and cons”, different lamp types are listed with a few advantages and disadvantages. Most of the info seems to be more or less correct, except where the incandescent bulb is called an “energy-guzzler” – hardly an appropriate term for a technical briefing and even less so as description of an incandescent lamp. Concordes and SUVs are “energy-guzzlers”, light bulbs are not. Let’s try and get back to a proper perspective here:

A 40W incandescent bulb (used 2.7 hrs/day as is the standard calculation) doesn’t use more energy per year than a toaster or hair dryer; a 60W bulb about as much as a steam iron; and a 100W bulb less than a coffee maker. [6]

Whereas the CFL, seemingly in a desperate attempt to find something positive to say about it, is called “money-saver” and “environmentally-friendly”. A lamp containing mercury cannot possibly be called environmentally-friendly! And in order to save money, all CFLs need to perform as promised and last as long as promised, without light loss, in all applications – which is far from the case!

1. Residential Lighting Consumption and Saving Potential in the Enlarged EU
2. Eurostat: Panorama of Energy
3. Telegraph: “Britons panic buying last stocks of conventional lightbulbs”
4. Telegraph: “Customers buy up traditional light bulbs before switch to low energy alternatives”
5. “Dagens Industri: “Svenskar hamstrar glödlampor inför förbud”
6. Energy Star: Appliances Fact Sheet