EU Lamp Regulation Update

(Updated with amended infographics)

2015 was a sad year for incandescent light lovers in Europe. The EU Commission, rather than celebrating its victories in having forced EU citizens to replace so many of their top quality incandescent lamps with poorer quality CFLs and LEDs (and generated millions of Euros in revenue for lamp manufacturers) is instead hellbent on removing all remaining tungsten lamps, leaving only the synthetic alternatives.

This is the lighting equivalent of banning glass and permitting only plastic, or banning silk and permitting only polyester! It’s beyond absurd. 

Freedom Lightbulb on why lamp regulation makes no sense

The bad news:

1. Special purpose lamps will be more strictly regulated from 25 February 2016 due to a regulation amendment aug 2015 in order to close the last “loopholes” for incandescent-lovers. Decorative & carbon filament lamps that have gotten popular in restaurants etc. can not be called “special purpose” anymore and are thereby no longer included in the exceptions to the regulation. Rough Service lamps appears to be available but restricted (the wording is unclear). Remaining stocks can still be sold but no new lamps can be imported into EU or “placed on the market”. So it’s a good idea to stock up now if you can still find them.

Banned 2 Special Purpose

Commission Regulation Amendment of 25 aug 2015 (legal text)
Save The Bulb about the amendment

2. Incandescent and halogen reflector lamps will be banned from Sep 2016. So, start stockpiling if you appreciate their beauty, dimmability and broad usefulness at home.

Banned 3 Reflector lamps

3. The halogen energy savers phaseout, scheduled for 2016, was postponed until Sep 2018 – rather than to 2020 as the lighting industry requested, or scrapped altogether as some of us have suggested as the promised Energy Class B halogen to replace the Class C halogen no longer exists on the market.

Banned 4 Halogen

Commission article about the halogen ban 2018

The (possibly) good news:

1. Halogen G9 mini-lamps for mains voltage will still be available. They last longer than standard incandescent lamps and can be used in a conversion kit as incandescent replacement, which has the added bonus that the base and bulb E re-usable, and are available in a wide range of models: A-bulb (GLS), pear, candle, flame, golfball, PAR, globe, diamod etc; clear, frosted, tinted, dicroic, decorated etc. The base and bulb of course costs more than the old lightbulbs used to, but once invested in, only the inner bulb needs to be changed so it’s really eco-friendly. It’s also perfectly legal (for now, anyway, but there is the threat of another amendment yet to be voted on, so best stockpile G9 bulbs too).

Paulmann halogen conversion kits (German/international)
Lysman halogen conversion kits (Sweden)

G9 conversion manual

2. Just a few weeks ago it was announced that, by using nanotechnology, scientists at MIT have found a way of recycling the “wasted heat” [which of course is not always wasted…] of an incandescent lightbulb and focusing it back on the filament where it is re-emitted as visible light, making it 3 times more effective now, and in the future potentially even substantially more effective than LEDs. This possibility can mean a comeback for the incandescent bulb, if any manufacturer wants to invest in developing the technology. It certainly has huge market potentials as many of us still prefer those old “golden standard” lightbulbs to the new synthetic copies. This would also satisfy the EU Commission’s ever more stringent energy standards, as well as those of the U.S. and other countries.

New development could lead to more effective light bulbs
Save The Bulb comment on the new bulbs

3. Many online lamp shops in EU have remaining stocks of phased-out incandescent lamps. Markedly more expensive than they used to be, of course, but at least still available until stocks run out. (Importing from outside of EU is illegal.)

Banned 1 Incandescent

U.S. Light Bulb Ban – Bad Idea!

Tomorrow the United States’ incandescent phase-out scheme bans incandescent halogen energy savers brighter than 43W (roughly equivalent to a 55W standard incandescent bulb).

The regulation has been found invalid, but the U.S. Government keeps acting as if this is not the case and keeps enforcing the scheme.

Despite most of the world falling for the same deceptive and easily refuted arguments from vested interests, this regulation is an extremely bad idea which will only lower light quality in everyone’s home, put health and the environment at risk and save almost nothing.

The only ones truly benefiting from the ban are lightbulb manufacturers who can sell new, lower quality, technically complicated patentable bulbs, costing up to several hundred times as much as the original lightbulb, and thereby make billions in profit.

Summary of why this regulation is such a bad idea:

Incandescent vs Luminescent Light (pdf)

Article showing how savings will be minuscule at best:

Light Bulb Regulation – President Fails Elementary Math

More  info:

Rik Gheysen’s website

Freedom Lightbulb: How bans are wrongly justified

The Lamp Guide (lightbulb and home lighting guide for the confused consumer)

(See left margin for more related websites, info and article links about the ban.)

Canadian Light Bulb Ban

To us Europeans, Canada has always seemed like the older and wiser sister to the United States. More reflecting and less quick to jump on the band wagon of every new idea adopted by the U.S. to please the largest corporations. That Canada delayed its earlier plans for an incandescent light bulb ban has enforced this impression.

But now Canada seems to be buckling under the pressure of vested interests. We can only hope law makers research the subject more thoroughly than other governments and federations have done before falling for all the blatant and easily refutable lies and exaggerations that made possible a near global ban of the only safe and environmentally friendly lamp ever made.

As always, Freedom Lightbulb has all the details on the ban: Canada to adopt more US Laws beginning with Light Bulbs: Losing Industry, Jobs and Choice, with Hardly any Savings

Light bulbs: Facts & Figures from Ottowa Citizen (The last two points are not correct. CFLs rarely last longer than a standard incandescent lamp, the latter can be made to last 20 000 hours and claimed emission figures are not based in reality).

Here are two well researched documents explaining why an incandescent ban is an extremely bad idea in general, and in Canada in particular.

1. Summary of relevant points by Freedom Lightbulb. Full document: Comment Contribution to the Canadian Light Bulb Regulation Proposal (pdf)

2. Shorter summary of similar points, with photos and diagrams:
Incandescent vs Luminescent Light (pdf)


EU Halogen Ban Review

As described in detail by Freedom Light Bulb, the planned halogen ban 2016 is up for review on Monday 25th.

The recommended regulatory changes include:

1. changing the entry into force of the stage 6 requirements to 1 September 2018, allowing LED technology to mature further and reach an optimal time point in terms of monetary and energy savings;

2. removing the current loophole by extending the stage 6 requirements to halogen lamps with G9 and R7s socket;

3. and introducing a provision that luminaires sold after 1 September 2015 should be compatible with LED technology to prevent future obstacles to efficient lighting.

Even the lamp manufacturers themselves find this a bit extreme, as there are no good replacements for some lamps.

The reason for extending the ban to these previously excempt lamp models is that a small number of adapter kits exist which can turn a G9 mini bulb into a frosted incandescent bulb, and an R7 mini tube into a screw-in bulb. The latter is absolutely ridiculous, as such a contraption would not fit in any normal luminaire. These tubes are needed for halogen floodlights and torchieres, for which there are no replacement tubes at all, not even poor quality ones.

Here are 12 good reasons to keep all models of Halogen.

Edit: Kevan Shaw reports from Brussels: The latest from Europe


U.S. Incandescent Regulation Found Invalid

Local researcher finds contradiction in incandescent light bulb laws

In 2007, congress passed the bi-partisan Energy Independence and Security Act (or EISA 2007) which included intentions to phase out incandescent light bulbs. According to the chart, 100 watt light bulbs would be phased out by Jan. 1, 2012, 75 watt light bulbs by Jan. 1, 2013 and by Jan. 1 of 2014, there will be no more 60 watt light bulbs available.

“To be perfectly honest, I hate fluorescent lights,” said Schulwitz. “So I looked up the law because they’re taking incandescent light bulbs away from me.”

While Schulwitz was able to find the bill where the impending regulation amendments were spelled out (Section 321(a) of EISA 2007), when he looked up 42 USC 6295(i), the corresponding section of the U.S. Code that deals with energy conservation standards for incandescent lamps, the amendments weren’t there.

“This was very confusing to me for the longest time,” said Schulwitz. “How could this happen? Lawmakers are not the type that are just going to make a mistake like this.”

So as his nature, he kept digging. He found that US Code 6295(i) was amended by Section 322(b) of EISA 2007, which struck out the first paragraph of section 325(i) of the Energy Policy and Conservation Act, or 42 USC 6995(i), and inserted a new paragraph which does not in fact regulate maximum wattage requirements.

“The very bill that passed wattage requirements, just a page or two later, repeals it,” noted Schulwitz. “They contradicted themselves, and since you can’t have a contradiction in law, the later section erased the contradiction and erased the maximum wattage regulations.”

Schulwitz said after he published his findings on Wikipedia, he believes some law makers noticed, because shortly after, a news article ran which claimed the ban had been overturned.

“But they never really corrected it,” Schulwitz said. “They just took away the funding to enforce the decision… You have a compartmentalized government structure where one end passes the bill that clearly says something, but another part has to compile coherent US code that can’t contradict itself and has to make all the pieces add up all while following the letter of the law.”

While he doubts his discovery will change anything, he still thinks it’s an interesting oversight and said he can’t help but wonder what other types of oversights exist.

How can it not change anything when the regulation cancels itself out??

Just like the EU lightbulb regulation is invalid due to not fulfilling its own requirements.

That is two major federations enforcing regulations that are invalid!


Time for more Q&As from some typical pro-ban sites. These sites can be divided into categories:

a) Lighting industry representatives and lobby organisations
b) Energy saving lobby organisations
c) Energy labelling organisations
d) Utilites
e) Environmental organisations, websites & blogs
f) Government agencies trying their best to explain and justify the ban of their federal masters and/or plug CFLs as the greatest thing since sliced bread (now with LEDs as close runner-up).

None of the latter ever seem to double check the PR information they receive from the former. So, let’s have a closer look at one of these constantly issued Q&As and CFL ‘Myth-busting’ pages. I will comment with the most truthful and updated information at my disposal.


First up is UK Department for the Environment, Food and Rural Affairs, DEFRA, on their energy savers info page. Even if a bit dated now (created at the first step of the phase-out) it gives such good examples of how the ban was spun then and keeps being spun now. The arguments have not changed much, as will be shown in subsequent posts.

The government has been working with all major retailers who sell light bulbs and UK energy suppliers to phase out traditional energy guzzling bulbs, replacing them with energy efficient light bulbs such as Compact Fluorescent Lamps  (CFLs). This is in advance of a EU-wide mandatory phase out of incandescent bulbs that began on 1 September 2009 and which was agreed by EU Member States in December 2008.

My comment: Auccumbinging to lighting industry lobby to get a national ban ahead of schedule is nothing to brag about… And “energy guzzling” (which the EU commission also uses to describe incandescent bulbs, despite them using less than 3% of home energy) is a juvenile phrase no doubt picked up from some ‘green image’ blog. It has no place in what tries to present itself as a respectable government information page.

The traditional light bulb has not changed for over a hundred years since Edison and Swan – the time of Queen Victoria – and these bulbs waste 95% of electricity as heat.

Cheap rhetoric trying to make them sound outdated when they are not. They haven’t changed much because they are already perfect! (If it ain’t broken, don’t fix it!)

And the heat is not ‘wasted’. While giving top quality light at home, it helps the house the same time. A 2003 study by DEFRA’s own Market Transformation Programme, found that throughout the year in a typical British house, about 60% of the energy from lighting turns into useful heat. (Same thing again as with the Swedish Energy Agency in my last post…)

Why have this initiative?

Climate change is the biggest threat facing our planet today. It is happening and it is happening now. Everyone – governments, businesses and individuals – needs to work together to tackle climate change by reducing our greenhouse gas emissions.

Yes of course. But if the EU Commission was truly serious about that, they would ban things that could actually make a difference, such as SUVs, junk food, soft drinks and bottled water, and start developing those alternative energy sources promised for decades. But that’s not going to happen, because they are not serious about it.

By phasing out the traditional light bulbs, we will all be using less energy so will need less electricity. CFLs are up to 80% more efficient then incandescent lamps.

First of all: no they are not. For a CFL to save 80% compared to an equivalent incandescent lamp, an 11 watt CFL would need to have an initial light flow of at least 730 lumen in Europe and 800 lumen in North America and lose no more than 6% over its lifetime. As both manufacturer catalogues even with their nominal lumen values show and consumer tests confirm, this is not the case. A scant few of the most effective top brand spiral CFLs now, over 30 years later, reach that number initially, but they still lose much more light over their life, even under optimal lab conditions. See also Equivalence Charts. With this + poor power factor + the heat replacement effect, they save not even half that.

Secondly, the percentage they claim to save is not the fictitious 80% (or more realistic percentages) of your entire electricity bill – it’s just made to sound that way – but of the small portion that lighting uses. And lighting uses on average less than 3% of total home energy consumption in the EU (3.85% in the UK) according to EU Energy Statistics, it can never be more than some percentage of those 3-4%.

What are compact fluorescent lamps?

They are small fluorescent lamps which fit into standard light sockets, usually referred to as CFLs or energy saving light bulbs.

They last longer and use less energy than traditional (or incandescent) light bulbs, because they are much more efficient at changing electricity into light.

CFLs are also cost effective. Advice from the Energy Saving Trust suggests that as they will last up to 10 times longer than a traditional bulb, just one energy saving bulb could save up to £3-6 a year and, depending on the length of time lights are in use every day, could save around £40 before it needs replacing.  Fit all the lights in your house with energy saving bulbs and you could save around £37 a year and £590 over the lifetime of all of the bulbs.

Funny how a government agency is so concerned with everyone’s private economy and doesn’t hesitate to forwards the inflated life rate & savings advertisement straight from the lobby organisation. Exactly in the same astounding way supposedly neutral agencies have acted in so many other countries. But perhaps not so surprising when the sources given at the bottom of their page are all lighting industry and their lobby organisations.

What other alternatives are there to incandescent lamps?

CFLs are the most energy efficient alternative technology, however halogen lamps are now available to fit into standard light sockets and emit light not dissimilar to incandescent lamps, but with only a 25-40% energy saving.

Not even 25% it turned out…

In the longer term, lamps based on Light-Emitting Diode (LED) technology promise to be highly-efficient alternatives even to CFLs.

The Energy Saving Trust’s website provide useful information on alternatives.

Already paving the ground for the even more profitable alternaties (profitable for the lighting industry, that is) and referral to one of the lobby organisations itself.

Are CFLs bad for my health?

Energy efficient light bulbs are not a danger to the public.

Like many household products, they must be disposed of sensibly and there are suitable facilities available for this purpose. Although they contain mercury, limited at 5mg per lamp, it cannot escape from a lamp that is intact. In any case, the very small amount contained in an energy efficient bulb is unlikely to cause harm even if the lamp should be broken.

True that it probably can’t escape unless the lamp is broken, but they cite no studies showing that it is harmless if broken. In July, 2011, a study showed that:

Once broken, a compact fluorescent light bulb continuously releases mercury vapor into the air for weeks to months, and the total amount can exceed safe human exposure levels in a poorly ventilated room, according to study results reported in Environmental Engineering Science, a peer-reviewed online only journal published monthly by Mary Ann Liebert, Inc.

The amount of liquid mercury (Hg) that leaches from a broken compact fluorescent lamp (CFL) is lower than the level allowed by the U.S. Environmental Protection Agency (EPA), so CFLs are not considered hazardous waste. However, Yadong Li and Li Jin, Jackson State University (Jackson, MS) report that the total amount of Hg vapor released from a broken CFL over time can be higher than the amount considered safe for human exposure. They document their findings in the article “Environmental Release of Mercury from Broken Compact Fluorescent Lamps.”

As people can readily inhale vapor-phase mercury, the authors suggest rapid removal of broken CFLs and adequate ventilation, as well as suitable packaging to minimize the risk of breakage of CFLs and to retain Hg vapor if they do break, thereby limiting human exposure.

Tests of eight different brands of CFLs and four different wattages revealed that Hg content varies significantly from brand to brand. To determine the amount of Hg released by a broken CFL, Li and Jin used standard procedures developed by the EPA to measure leaching of mercury in liquids and used an emission monitoring system to detect Hg vapor.

“This paper is a very nice holistic analysis of potential risks associated with mercury release from broken CFLs and points to potential human health threats that have not always been considered,” according to Domenico Grasso, PhD, Editor-in-Chief and Vice President for Research, Dean of the Graduate College, University of Vermont (Burlington).

Mercury Vapor Released from Broken Compact Fluorescent Light Bulbs Can Exceed Safe Exposure Levels for Humans, Study Finds

See also my earlier post: Mercury Problem Worse Than Suspected

Do CFLs contain mercury?

Yes, they need mercury to generate light efficiently. The mercury is used to produce ultraviolet light, which is then changed into light we can see by a special coating in the lamp. The coating is inert and poses no health risk.

Nowadays, the typical amount is 3 – 4 milligrams per lamp (and limited at 5mg per lamp) – just enough to cover the tip of a ball point pen and just enough to last the expected life-time of the lamp.

This reply immediately sets off my lobby alarm. That “ball-point pen” counter-argument is just one more in a long line of desperate attempts to downplay the still embarrassing and rather alarming fact that a supposed ‘green’ lamp contains mercury. I’ve seen it a thousand times on the internet. It seems to originate from – surprise! – Harry Verhaar, Philips Lighting, 2007 and was posted on Nils Borg’s energy lobby organisation eceee’s website:

However a number of concerns still exist regarding CFLs. These lamps contain minute amounts of mercury, which is needed to create light in an efficient way. Despite the fact that the mercury used would fit on the tip of a ballpoint pen, there is a justified worry about this mercury being disposed of in the ground. CFL’s fall under the EU WEEE recycling laws and it is expected that in the future the great majority will be recycled.

Why would a government agency with the stated mission “to protect the environment for future generations” try to downplay mercury contamination risks with minising statements like “the size of a ball point pen” – which may still be over the ‘safe’ limit when that evaporates and spreads in a room. Quoting an article I’ve cited earlier, Mercury in CFLs – special investigation (emphases added):

“First off, the often-cited claim that bulbs contain only 5mg of mercury was clarified: it’s an average. (..) The average amount of mercury in a CFL is 5 mg with a range of 0.9 to 18 mg. Obviously, the smaller (in watts) the bulb, the less mercury. Higher power (brighter) bulbs generally have more, although there can be fluctuations between brands as well.”

“‘Mercury concentration in the study room air often exceeds the Maine Ambient Air Guideline (MAAG) of 300 nanograms per cubic meter (ng/m3) for some period of time, with short excursions over 25,000 ng/m3, sometimes over 50,000 ng/m3, and possibly over 100,000 ng/m3 from the breakage of a single compact fluorescent lamp,’ the report confirms.

“That’s up to 300 times higher than the recommended safe level of inhalable mercury vapour. From just one light bulb. According to the DEP scientific study, while the 300 ng/m3 limit is the maximum allowable daily dose of mercury for the sake of legislation, there is in fact no known safe level for mercury exposure.”

Shouldn’t DEFRA know this? Isn’t that part of their job?

Will the mercury in CFLs cause damage to the environment?

Over the life time of both lamp types, energy efficient bulbs produce less mercury. This is due to the fact that mercury is emitted from power stations during electricity generation and energy saving bulbs are more energy efficient – therefore saving on the amount of electricity that needs to be generated.

Ah, here we got the next tired old PR argument that has been recycled over and over since early 1990s. This too is rehashed by Harry Verhaar via eceee:

However, mercury is also omitted in the atmosphere from the power system, and the mercury contained in lamps need to be weighed against that emitted from power plants. Studies show that indirectly the additional energy usage of incandescent bulbs is responsible for more mercury entering the environment than that is contained in a CFL.

This argument was invalid when it was created in 1991, and is even more so today. I believe was done on behalf of the Danish Market Transformation Programme, and spread via Nils Borg’s other energy lobby organisation IAEEL through other Market Transformation Programmes such as the Swedish one by STEM (see CFL Analysis – Mercury for more details, references and a pdf copy of the Danish ‘study’).

It was based on a fantasy calculation exercise at a Danish university in 1991, with an imaginary scenario of a CFL containing only 0.69 mg mercury (impossible to attain at that time, and still is), while electricity production from coal was assumed at a whopping 95% (as was the case in Denmark at that time but nowhere close to true for the rest of EU then, and even less so today). 

Of course, we’ve done a lot to reduce mercury emissions in the UK in recent years. Total emissions have fallen by 80% since 1990 and stand at 7.6 tonnes a year (2005 NAEI figures – see; power generation accounts for about 31% of this total.

Amusingly, DEFRA is clearly unaware that they just confirmed the invalidity of the first paragraph with the information in the second, (stating coal production is now only 31%) and the earlier point above (mercury content being 3-4, max 5 mg)!

This is what happens when you only repeat the arguments that the lobby organisations feed you, without doing your homework and actually understanding what you’re saying.

Does the mercury in a CFL pose a risk?

The mercury cannot escape from an intact lamp and, even if the lamp should be broken, the very small amount of mercury contained in a single, modern CFL is most unlikely to cause any harm.

But it makes sense to avoid unnecessary contact with mercury; and any light bulb – broken or intact – should be dealt with sensibly.

Again downplaying the risk, instead of warning of use around children, pregnant women and the elderly and sick!

‘Sensitive populations are of particular concern with mercury exposures for a number of reasons.’ ‘Elderly and unhealthy individuals may already be at comprised health and be more susceptible to mercury effects than a healthy individual. For example, mercury does kidney damage which could exacerbate an already existing kidney disease’.

‘Infants and toddlers have much more vulnerable brains.’ ‘Mercury exposures have serious impacts on fetal and infant brain development. Elemental mercury can cross the placenta from a mother to fetus.’ ‘It is well established that the developing organism may be much more sensitive than the adult to neurotoxic agents,’ reports Maine’s DEP study. ‘For example, methylmercury exposure can produce devastating effects in the fetus, including cerebral palsy, blindness, deafness, and even death, while producing no or minimal effects in the mother‘.

Source: Mercury in CFLs – Special Investigation See also Mercury in Fluorescent Lighting

Is a bulb likely to break?

Like all household products energy efficient bulbs can break, but they are actually harder to break than traditional bulbs: they are often coated with plastic as a protector and as they’re of a smaller diameter than traditional bulbs they’d have higher stress limits. According to trade figures, breakage rates are less than 1%.

Only some of the CFLs with outer bulb have an extra protective coating. Naked U- and spiral tubes do not. (Especially the spiral tubes seem particularly thin and vulnerable to breakage, but I’m not going to test that.)

An even if the 1% breakage rate reported by the industry reflected reality – which I doubt – that’s still a lot of broken CFLs! According to this Oxford report, “LIF (Lighting Industry Federation) estimate that 7 million CFLs were sold into the domestic [UK] market in 1999.” That makes 70 000 broken bulbs per year in the UK alone! (Can’t find fresher numbers but sales have probably more than doubled by now.)

How should I deal with a broken CFL?

Although the accidental breakage of a lamp is most unlikely to cause any health problems, it’s good practice to minimise any unnecessary exposure to mercury, as well as risk of cuts from glass fragments.

Revised advice issued by the Health Protection Agency is to:

  • Ventilate the room
  • Wipe the area with a damp cloth, place that in the plastic bag and seal it
  • Sticky tape (e.g. duct tape or similar) can be used to pick up small residual pieces or powder from soft furnishings and then placed in a sealed plastic bag. The plastic bag doesn’t need to be air tight, but should be reasonably sturdy.
  • Place it in another, similar bag and seal that one as well (this minimises cuts from broken glass).

The public should contact the local authority for advice on where to dispose of broken or intact CFLs as they should be treated as hazardous waste and should not be disposed of in the bin. All local councils have an obligation to make arrangements for the disposal of household hazardous waste at a civic amenity site or household waste recycling centre. The National Household Hazardous Waste Forum runs a website with details of these centres for chemicals, but which also applies to other hazardous wastes ( Alternatively contact your local council direct.

Mercury in CFLs – Special Investigation found this advice quite insufficient:

But the most up to date safety study available says plastic bags are next to useless for containing a broken CFL bulb.

“Double re-sealable polyethylene bags…did not appear to retard the migration of mercury adequately to maintain room air concentrations below the MAAG… The significance of this issue is that cleanup material may remain in the home for some period of time and/or be transported inside a closed vehicle, exposing occupants to avoidable mercury vapors when improperly contained,” report the Maine scientists. The best method of containing bulb waste is inside a glass jar with a hermetically sealed lid.

Surprisingly, plastic jars, like large peanut butter containers with screw top lids were little better than plastic bags, also failing to prevent mercury vapour from leaking into the house.

The scientific experiments proved that debris “sealed inside two polyethylene plastic bags and then placed in a clean room”, sent atmospheric mercury levels up to more than three times the maximum allowable limit, for more than eight hours – the mercury vapour simply leached out of the bags into the air.

“Of the 12 different types of containers tested during the 23 different tests, the plastic bag was found to be the worst choice for containing mercury emissions. Based upon this study, the DEP now suggests that a glass container with metal screw lid with a gum seal be used to contain debris.”

All of which means the current disposal advice given by New Zealand’s Ministry for the Environment is dangerously faulty, based on the most recent scientific studies. If a bulb breaks, disposing of it in two plastic bags will not prevent it from poisoning your house. Only a glass jar with a hermetically sealed screw-top lid is safe enough to hold the debris.

Clearly, many agencies around the globe have received – and posted – the same useless information on best clean-up procedures, thereby putting millions at risk.

How should I dispose of unwanted CFLs, e.g. at the end of their life?

From 1st July 2007, waste CFLs have been subject to the requirements of the Waste Electrical and Electronic Equipment (WEEE) Regulations. Those who sell items such as energy efficient bulbs must provide information to the public about where they can take waste bulbs and other WEEE. Some retailers will also take them back in store. However, most retailers have funded Designated Collection Facilities, in the main at local authority civic amenity sites. From this point, producers of the equipment fund the transport, treatment and recycling, where most of the mercury can be recovered.

This is a good and necessary step, but not everyone has the time, energy and opportunity to get their burned out CFLs to the right place for recycling, so the easiest thing would have been to simply ban the mercury-containing CFLs for home use in line with the RoHS directive:

  1. Lead (Pb)
  2. Mercury (Hg)
  3. Cadmium (Cd)
  4. Hexavalent chromium (Cr6+)
  5. Polybrominated biphenyls (PBB)
  6. Polybrominated diphenyl ether (PBDE)

Amazingly, CFLs are exempt from this hazardous substances ban due to their false claims of saving so much energy.

How does this amount compare to other articles that contain mercury?

A typical mercury thermometer may contain 0.5 to 3 grams of mercury, whilst a typical mercury barometer may contain 100 to 600 grams of mercury, around 25,000 to 150,000 times more than an energy saving bulb.

Again trying to downplay the significance of the mercury content in CFLs with another of the popular propaganda retorts handed out by lobby organisation for government agencies, environmental organisations and a gazillions of ‘green’ bloggers and commentating trolls to repeat ad nauseum, despite being totally meaningless:

What a typical thermometer contains is irrelevant since they are banned for that mercury content. According to this Canadian news site, 5 mg of mercury is “enough to make 6,000 gallons of water toxic“. (That’s why Canada decided against an incandescent ban.)

(The third popular retort is the one comparing with dental amalgam. DEFRA very wisely skipped opening that can of worms…)

Is the light from CFLs bad for my skin?

In October 2008 the Health Protection Agency issued precautionary advice regarding the use of certain types of CFLs in close range for periods of time over one hour. Their advice is that that open (single envelope) CFLs should not be used where people are in close proximity – closer than 30 cm or 1 ft – to the bare light bulb for over 1 hour a day. At these distances CFLs might emit Ultra Violet (UV) light at a level less than equivalent to being outside on a sunny summer’s day.

If bulbs are required at these distances then an encapsulated (double envelope) CFL should be used. These are cost around the same as open CFLs and offer similar levels of energy savings.

All CFLs are safe for normal usage and the HPA does not advise removing CFLs from your home.  More information can be found on the HPA website.

Through EU legislation, mandatory limits will ensure that all CFLs will not emit UV light above safe levels from September 2009. The European Commission’s Scientific Committee on Emerging and Newly Identified Health Risks also published a report into this issue recently and this can be found on the EC website.

Good, but I don’t think they’ve actually done much to enforce such a needed supervision. SCENIHR seems to accept most of the industry claims that their lamps are perfectly safe. See these posts on Health issues for more details.

What about those with light-sensitive conditions?

The Government has been in discussion with groups representing a small number of individuals for whom the use of CFLs can aggravate pre-existing light-sensitive conditions. The Government was successful in pressing the European Commission to introduce mandatory standards for UV emissions.

The Commission’s Scientific Committee on Emerging and Newly Identified Health Risks published a report into this issue recently and this can be found on the EC website.

As an alternative to CFLs, halogen lamps (like the one pictured) are now available for use in standard sockets which operate in a similar way to incandescent bulbs, however these offer only relatively small energy savings.

That “small number of people” are estimated by SCENIHR to be around 250 000 in the EU. And asking the affected themselves, it seems to be rather 2 million in the UK alone! Ban on incandescent bulb in U.K raising concerns on health issue of two million people

Don’t efficient bulbs take a while to warm up?

Modern, good quality, efficient bulbs should take little more than a couple seconds to warm up to full brightness, the short delay is due to the way they work.

The best CFLs have generally gotten a bit faster, but according to the latest CFL consumer tests, there are still big variations in start-up time between various CFL models. They are generally not (even by the EU Commission) recommended for bathrooms, closets, stairways and other spaces you only visit briefly and need full light instantly.

But aren’t efficient bulbs too big for most fittings? And don’t they give off  ‘gloomy’ light?

The technology of energy efficient light bulbs has improved massively in recent years. Manufacturers have now developed “look-alike” bulbs for the majority of light fittings and they give the same standard and quality of light as existing bulbs and in the same shapes.

At the moment, many efficient bulbs are not compatible with dimmer switches. However dimmable bulbs are on the market and will be made increasingly available in the UK during the phase out period. As an alternative to CFLs, halogen-based lamps are now available for use in standard lamps sockets, though these only offer relatively small savings.

In the past, the variety of colours available from CFLs was limited and they usually came as a ‘cold blue’ colour. Energy efficient bulbs now come in a range of colours from the original ‘cold blue’ to the traditional ‘warm white’ that you get from incandescent lights. Look for the Energy Saving Trust’s ‘Energy Saving Recommended’ logo as these have to emit the same warm light level as old fashioned bulbs.

True that the best CFLs look decently incandescent-like now. But they still only have limited colour rendering capacity (CRI 81-83).

True that there are more models now to fit a wider variety of luminaires (light fittings). But there are still many home luminaires where the replacement lamps don’t fit well or are unsuitable for other reasons.

True that there are now a few dimmable CFLs, but they are very expensive and don’t dim very nicely. But at least they may not fry existing dimming circuits like standard CFLs.

True that there are halogen energy savers, and that these dim beautifully. But only clear ones are permitted which can be quite glaring at full power. [Edit: And only  to 2018, after which most halogen lamps will be banned to.]

Aren’t these bulbs more expensive?

Whilst the upfront cost of efficient bulbs can be greater than traditional bulbs, according to the Energy Saving Trust efficient bulbs last up to ten times longer than a normal bulb and can up to £3-6 a year each in energy bills (for a 100W bulb), saving consumers up to £60 over the lifetime of the bulb in reduced energy bills and replacement costs.

Retailers are now selling efficient light bulbs at prices well under £1, and in some cases prices are not much more than traditional bulbs.

If the CFL is ‘cheap’ it is often either poor quality, and/or subsidised with (your) tax money (see CFL Subsidies).

Life rate varies widely between models, individual lamps and how they are used. Many either burn out prematurely or get so dim with age they have to  be replaced before they burn out. In such cases, savings are not what those ideal numbers promise. But quality has been improved somewhat over the last years since this FAQ was written.

Doesn’t switching the lights on and off use more energy than leaving them running?

No. Switching on an energy efficient bulb only uses the same amount of power as leaving it on for a minute or two. Turning the bulb on and off repeatedly may shorten a bulb’s life but normal use should not do this.

The recommendation from Osram is to leave them on for at least 15 minutes before switching off again. More frequent switching than that may dramatically shorten life.

A study published in 1998 examined CFL performance with five different operating cycles. It found that when the length of time the lamps were on was reduced from 3 hours to 1 hour, the lamp lasted for 80 percent of its rated life. When reduced to 15 min and 5 min, the lamp lasted for 30 percent and 15 percent, respectively, of its rated life.

Even the pro-CFL Energy Saving Trust confirms that frequent switching may reduce CFL life:

Regularly flicking a bulb on for a brief moment and then off again is not recommended as it can shorten the lifetime of the bulb.

See my post CFL Analysis – Life Span for more details and sources.

Does the law require me to replace all my traditional light bulbs immediately?

No; while the intention of both  the UK’s retailer-led voluntary initiative is to phase out the sale of inefficient bulbs in participated retailes, the EU’s mandatory measures under the Energy-using Products Directive will phase out the manufacture and import of inefficient bulbs and retailers will be able to sell on existing stock if they so wish.

So what is the timetable for these bulbs being phased out across the EU?

  • 1 September 2009 – From this date, manufacturers will not be able to place on the market clear lamps equivalent to 100W incandescent lamps, or above, must be minimum C class energy rating (leaving only halogen retrofit halogen lamps). Non-clear (frosted / pearl) lamps must be minimum Energy Label A-class.
  • 1 September 2010 – From this date, manufacturers will not be able to place on the market 75 W clear incandescent lamps.
  • 1 September 2011 – From this date, manufacturers will not be able to place on the market 60 W clear incandescent lamps.
  • 1 September 2012 – From this date, manufacturers will not be able to place on the market all remaining clear incandescent lamps (i.e. 40W and 25W).
  • 1 September 2016 – Raising the minimum level to B class for clear retrofit lamps (i.e. phasing out C-class retrofit halogen lamps).

Where can I find out more?

Page last modified: 29 October 2009
Page published: 11 January 2008

Heat Replacement Effect Again

Friday evening, something rare happened in conformist Sweden (where no article may be published without praising the politically correct lamps):

On prime-time national news, a representative of the Swedish Energy Agency (one of the strongest anti-lightbulb forces in Sweden*) was caught blatantly lying about the incandescent lightbulb. Can be viewed here for another 5 days (at 9:55 in the clip): Rapport 31 Aug, 19:30 My description, transcription and translation to English, reporter in green, his narrative in citation marks:

News anchor: From tomorrow the lightbulbs will be gone. The Energy Agency thinks this is an important measure for the climate and claims this will save energy comparable to the heating of 80 000 houses. But it turns out that the Agency uses exaggerated and outright erroneous numbers.

Cue Energy Agency representative Peter Bennich, turning on a an incandescent bulb:

– Well, this is a very nice light source, but unfortunately it uses a lot of electricity. So therefore it will be phased out. 

Then an elderly man in a lamp shop is interviewed while buying incandescent lamps:

– You’re stockpiling?

– Yes, absolutely! These modern lamps are so horrible, strange colours and… 

Clip new picture of lawn mowing.

“Environmental bombs like old lawn mowers and two-stroke engines are allowed but lightbulbs are banned.”

Back to Peter Bennich again (filmed at the Agency in front of a huge flat screen TV):

– They waste so much. It’s like buying 10 liters of milk and throwing away 9 liters every day.

“Only 1/10 of the electricity is of any use in a light bulb, the rest is pure waste. This is what the Energy Agency says.” (Document of the statement is shown.) “And this way we will save 2 TWh, 10% of the electricity in Sweden. This is the equivalent of 80 000 [electricity-heated] private homes they claim.”

– It saves at least 80% compared with the other lamp, says Peter Bennich again (likely referring to the CFL or LED).

“But something has been forgotten….”

Back to the man in the lamp shop:

– I have electric heating at home. The radiators turn on less frequently when I have the lamps lit.

“Lasse is quite right. If a lot of the of the electricity used for lamps is turned into heat, it logically follows that one can just turn down radiators a little instead. Most Swedish houses need heading, during most of the year anyway.”

Back to the Energy Agency and Peter Bennich again to check:

– Is it true that 90 % is pure waste? 

– Yes, that is my opinion. 

“In the Energy Agency propaganda incandescent bulbs are presented as only wasteful.” (A leaflet is shown.) “But the Agency has made their own calculations that show that throughout a whole year, not all but about 50% of the heat from the lightbulb is useful.”

Presented with this undeniable fact, Peter Bennich tries to spin it the other way:

– Well, it turns out then that max 50% of the heat from incandescent lamps are of any use… 

“Oops, earlier it was 10% that was useful. The truth was 50%! Which means that then the 2 TWh savings are not true, and not the other numbers in the information either. For those who want to save energy at home, there are much worse climate villains than the little lightbulb.”

Then the reporter presents Bennich with an infrared heater and a lightbulb, and turns up the heat in his questions:

– If I use this [lightbulb] as a reading lamp for half an hour every day for a whole year except June, or use this [infrared heater] for one evening, which uses most electricity?

Without even a second’s hesitation Bennich replies:

– The incandescent bulb! 

– No.

– Yes, Bennich insists.

“Wrong again. My reading lamp uses 2.7 KWh per year in my example. The patio heater uses 3.6 KWh after only 3 hours!” 

“But”, the reporter seems compelled to add (probably to not get in trouble with his superiors), “if you look at all of Sweden, the ban can still save energy.”

He then lets Bennich get the last word (despite just having proven what that word is worth):

– Lighting uses a very large part of electricity use in Sweden. 

– It sounds as if we are not very good at turning the lights off when not in use?

– Yes! We Swedes are extra poor at turning lights off. 

***  The End  ***

Fascinating, isn’t it?

Note how the Energy Agency representative is extremely careful to use the word ‘electricity’ rather than ‘energy’. That is a very deliberate  and well-coordinated strategy in order to make lighting part sound more than it is, as electricity itself is only a smaller part of total energy consumption.

It’s not a lie but it’s not telling the whole truth either. The largest part of most households’ total energy consumption is space heating (or cooling in warmer areas) followed by water heating. Lighting is only a small fraction of the remaining household electricity. EU average according to official statistics, is less than 3% of total household energy use – of which an estimated 46% was already fluorescent or halogen at the time of the ban (!) according to the preparatory study that was used as foundation for the ban (see my post EU Energy Statistics for details and references).

What is also deceptively concealed is the fact that the largest lighting part of national electricity use is in the commercial, industrial, public building and road illumination sectors, which use the most number of lamps, the highest wattages, and keep them turned on for most of the day or night. And most lamps in these sectors is already fluorescent or gas discharge! Some of them can still be optimised with newer and more efficient lamps of the same or similar lamp groups, better control systems etc, and by being turned off when not in use. That’s where the real savings on lighting can and are being made!

Whereas the private sector lighting use is such a microscopic slice of the total energy pie that it can easily be saved without banning any lamps.

I am sadly becoming more and more convinced that this whole lamp issue is just a diversion to keep us all believing that both we and politicians have really made a difference now by switching a few lamps. The planet is saved and we can all go back to sleep and keep consuming as usual. While the multi-billion-dollar CFL and LED industry is laughing all the way to the bank.

When the truth is that no one wants to rock the boat and start restricting the things that really pollute and deplete resources. Such as petrol-fueled cars & airplanes and the gazillions of electrical gadgets, clothes, trinkets and junk food we’re continuously being prodded to buy more and more of. No restrictions there.


* The Swedish Energy Agency (STEM) has been leading the Swedish part of the global Market Transformation Programme (away from incandescent lamps) all through the 1990s until now. As I reported in The Global Anti-Lightbulb Campaign post, Kalle Hashmi, Executive Officer of Technology & Market Unit at the Swedish Energy Agency, in his Market Transformation Programme paper from 2006 admitted that:

STEM does not necessarily enjoy a commanding or trusted position vis-à-vis the consumers due to previous campaigns launched by STEM during the 90s. These campaigns may be summed as:

STEM engaged in ill conceived, inconsistent and ad-hoc promotions.
STEM did not take into account the consumer perspective but rather concentrated exclusively on energy efficiency and technical issues.
STEM relied indiscriminately on the information provided by the vendors.
STEM was very passive about dealing with CFL technology failures that affected main benefit claims.
STEM did not study, did not know or admit technology limitations.
STEM did not demand or work to establish minimum performance requirements.
STEM never questioned why long life claims were not backed by a guarantee.

And it seems that they’re still at it…

Incandescent Light Quality

Bye Bye Light Bulb – Do NOT Rest In Peace!

Now the last standard incandescent bulbs (15W, 25W, 40W) are banned from production and import in the EU. Remaining stocks may still be sold. Small special lamps, some decorative and rough service lamps will still be available (see Freedom Lightbulb for details). Reflector lamps will be restricted from next year and most incandescent halogen lamps from 2016.

This is truly sad because there is NO replacement for incandescent light quality, because the alternatives do no not produce light by incandescence (glow) but by technical, electronic and chemical processes which create radically different light properties, besides containing both more electronics and more potentially toxic, environmentally destroying or rare and expensive substances.

Here I’ve made a rough overview of lamp types family tree:

Whereas standard incandescent lamps and halogen incandescent lamps can be said to be ‘siblings’, all other lamp types have nothing more in common with incandescent lamps than being powered by electricity.

So, no matter how much effort is put into creating a phosphor mix that will superficially look more or less incandescent-like, it will just never be the same because it is a chemical composite light, a sort of digital soul-less light, totally lacking the warm natural glow of incandescence.

Banning a top quality product in favour of totally different and quality-wise inferior products is like banning wine with the argument that “wine-lovers can just as well drink cider, practically the same thing” because both are mildly alcoholic beverages with a superficial similarity. Or banning silk because there are micro-fibre materials with a silk-like look – everyone knows it’s not the same thing! Both have their respective uses and both should naturally be available on the market unless harmful.

What’s so special about incandescent light then?

Incandescent light (along with sunlight) is the ‘gold standard’ against which all other types of light is measured (even according the Global Lighting Association, p. 10 in this document). This is why so much effort has been put into trying to copy its light colour, colour rendering capacity, dimmability, heat- & cold resistance, perfect power factor and other unique qualities – without ever having hope of succeeding on more than the most superficial levels, because:

• Unlike other artificial light sources, incandescent and halogen lamps are tungsten black-body radiators, a safely contained and electrically amplified version of the same fire-light which humanity has evolved with since fire was first discovered. Lighting designer Ed Cansino in a highly informative interview:

“…if I were forced to choose the best lighting for residential overall, it would have to be incandescent. I feel that we as humans have had a deep connection to flame for many thousands of years. It’s almost like it’s in our DNA. It’s interesting that as time moves on, people are still drawn to sitting around the camp fire, a fireplace, even a barbecue. Think of a Yule log. It’s just that this particular quality of light is ingrained in us. You can even get a screen saver of log flames. Incandescents with their glowing filaments are a form of flame and are thus an extension of this inborn affinity that we have for fire.”

(photo: ALAMY, source:

• Incandescent light colour follows the Planck curve so that when dimmed or used at lower wattages, the light colour gets proportionally warmer and more candle like. Increase brightness or use a higher watt lamp, and it gets whiter again. This is how a natural light source behaves. Whereas LED and CFL gets more blue, green or grey, even if they were reasonably warm-white at full power. Example of how an incandescent (left) and an LED (right) looks before and after dimming in a Consumer Reports test lab video from KOMO News (click on link to see full video, these are only snapshots):

Incandescent & LED full power

Incandescent & LED dimmed(source:

Incandescent & LED dimmed

• Like natural daylight, incandescent light has the highest possible colour rendering (CRI 100) due to naturally continuous spectrum, and a warm-white, human-friendly light which radiates and makes colours come alive (unlike the duller light from CFLs and LEDs with CRI just over 80).

Strawberries (source:

Ron Rosenbaum describes it more poetically:

I’ve tried the new CFLs, and they are a genuine improvement—they don’t flicker perceptibly, or buzz, or make your skin look green. There is a difference, and I’d be in favor of replacing all current fluorescent bulbs with CFLs. But even CFLs glare and blare—they don’t have that inimitable incandescent glow. So don’t let them take lamplight away. Don’t let them ban beauty.

Don’t get me wrong, this is not a plea for Ye Olde Times, for gaslight and quill pens. It’s just a plea not to take for granted the way we illuminate our world. Not all change is improvement. Why do I put such a premium on incandescence? For one thing, I am a bit romantic about it. A lamp fitted with an incandescent bulb and dim translucent shades casts a lovely, painterly glow on human faces, while the light of fluorescents recalls a meat locker.

Why do you think there is such artistry to so many lampshades? They are the lingerie of light.

But the appeal of incandescence is not just a matter of romance. I suspect there are also answers to be found in the physics and linguistics of incandescence.

I’d speculate that it has something to do with the different ways light is created by incandescents and fluorescents. Incandescent light is created by heat, by the way an electric current turns a thin metal filament (usually tungsten) red then white hot in a transparent or translucent globe filled with an inert gas that prevents the filament from burning up, allowing it to give off a steady glow. (That explains the warmth: The fact that incandescence emanates from heat creates warmth, distinguishes it from the cold creepiness of fluorescence.)

Fluorescent light bulbs, on the other hand, are coated inside with chemical material that lights up as energy reaches the tubes. (It’s a bit more complicated than this, but that’s the general idea.) Fluorescents sometimes appear to flicker because alternating current brings that energy to the bulbs in pulses, rather than steadily. In incandescents, the hot filament stays hot—and therefore bright—despite alternations in current; it can’t cool fast enough to dim or flicker.

The new CFLs pulse faster than their ancestors, so the flickering is less perceptible, but at some level, it’s still there. CFL manufacturers may be right that the new bulbs are an improvement, but there is still something discontinuous, digital, something chillingly one-and-zero about fluorescence, while incandescent lights offer the reassurance of continuity rather than an alternation of being and nothingness.

Who wants to have a romantic dinner in the dull gloomy light of a CFL or LED? I’ve been to such restaurants and it was just awful!

Halogen-lit restaurant in Waikiki

And why do lighting designers or business owners often choose soft warm incandescent lamps or bright glittering halogen spotlights in hotels, spas, reception areas, high-end boutiques etc? Because they are well aware of the fact that no other light can create such attractive, intimate, relaxing or luxurious-looking environments.

Halogen-lit jewellry store

Leaving many in the dark

There are both visible and measurable differences in quality between incandescent light and the light from even the best CFLs and LEDs on the market, well known to the lighting industry and documented in their own technical specifications.

If there is a more efficient product within the same group, that has exactly the same properties and not just similar (including spectral power distribution, colour rendition, power factor, glare safety, price, fit, availability, functionality etc) a ban might be tolerable if not acceptable. But you cannot reasonably replace a product from one group with a product of a completely different technology without getting something altogether different. Some may not mind the difference, but for those who do, the original, higher quality product must remain available.

Also, there are many sensitive people in general and light sensitive people in particular who experience everything from discomfort or dislike to severe symtoms from the recommended alternatives. There are also the elderly to consider. Even the extremely pro-ban Swedish Energy Agency (STEM) representative Kalle Hashmi earlier pointed out that:

When you get older, 60+, you need more light to be able to see, and our ability to distinguish colours and contrasts diminishes. Then we need to choose a light that solves all three problems. When in a situation where colour rendition is very important, where you need to match colours, then it is very important to use a mains voltage halogen lamp because it has much better colour rendering capacity. It can be a situation like cooking, where all colours seem matte to the eyes. So what an elderly person perceives as ‘brown’ may actually be burnt. With halogen you see better.

In other words, incandescent light. The banning of frosted incandescent and halogen replacement lamps already creates a lot more glare – something the ageing eye is also more sensitive to. So what will the elderly or vision impaired do when halogen incandescent lamps are also banned? And all those of us who simply enjoy beauty and warmth and who prefer to save by dimming or switching lights off when not in use, rather than compromise on quality?

Not to mention artists, photographers, designers and many other groups dependent on perfect colour rendition to be able to do their job.

Update: This song perfectly captures how many of us feel:

FL/CFL or LED light may have its use where lamps are left on all day and quantity matters more than quality, e.g. at work, in public building corridors etc, but not necessarily in all retail, hospitality or domestic environments where consumers expect a more attractive and/or relaxing light. There is certainly no, even remotely similar, replacement for the romantic glow of the ‘carbon-filament’ type decorative bulb often used in restaurants, for example.

Light is like air, food and water – it is essential to our well-being. And quality matters!

In the words of lighting designer Howard Brandston:

Human beings evolved with and in response to light—sunlight, moonlight, the incandescence of fire. Our physical mechanism, the neuroscience that makes us who we are, is exquisitely attuned to light’s qualities and rhythms. The light that envelops us steers our very existence. To impose limitations on how we choose to illuminate our world carries profound biological implications.

Lighting is one of the most powerful mood-enhancers, can markedly affect how environments are perceived, as well as both comfort, well-being and health.

This is why many lighting designers are upset over being robbed of one of the many tools of their craft. It is their job to create the most optimal lighting environments where energy use, cost, quality, quantity, desired functionality, mood etc are all factors to weigh against each other for each unique situation, which they, unlike politicians, are well educated to do.

Lighting designers against the incandescent ban

IALD – International Association of Lighting Designers
IALD Statement

Jeff Miller, President-elect IALD, Director of Pivotal Lighting, statement

PLDA – Professional Lighting Designers’ Association
PLDA Statement

Kevan Shaw Lighting Design, PLDA Director for Sustainability
Summary of points against the CFL Save The Bulb blog

Michael Gehring, Principal of KGM Architectural Lighting
Gehring statement

Scott Yu, Principal, Chief Creative Officer of Vode Lighting
Yu statement

Howard M Brandston, FIES, Hon. FCIBSE & SLL, FIALD, LC
Brandston Statement

SaveTheBulb also lists Artists against the incandescent lamp ban



Ban The Ban – Sign The Petition!

EU incandescent ban

Now it has been three years since the first step of the incandescent phase-out was enforced in the European Union. In a few weeks, the last of the regular incandescent bulbs, 25 and 40 W, will be prohibited from production and import into the European Union. Remaining stocks may be sold until they run out. Next year reflector lamps are up for restrictions and 2016 most halogen lamps will be banned.

Was this a good idea?

Evidence is mounting that this was a very poor decision.

But CFLs are so great?

Since the ban, we have had a never ending flow of reports on CFL issues, from dimming problems, slow start-up time, poor performance at cold temperatures, lamps burning out prematurely, starting fires, emitting UV, radio frequencies and causing disturbances on the grid. Plus consumer tests showing much still to be desired when it comes to producing promised brightness etc.

And worst of all: Chinese workers and environment poisoned to produce ‘green’ lamps for us, risk for toxic contamination of your home, poor recycling rates, and recycling plant workers at risk from people throwing CFLs in glass recycling bins.

But incandescent lamps use more mercury than CFLs..? 

No, they don’t. This clever PR lie was invented in 1993 by the EU-funded anti-lightbulb lobby organisation IAEEL and based on a fantasy calculation exercise at a Danish university in 1991, with an imaginary scenario of a CFL containing only 0.69 mg mercury (impossible to attain at that time, and still is), while electricity production from coal was assumed at a whopping 95% (as was the case in Denmark at that time but nowhere close to true for the rest of EU then, and even less so today). 

So poof, the main argument that has gotten environmentalists, politicians, journalists and the general public alike to believe a mercury containing product is the best product for the environment, has no substance at all. 

See my Mercury posts for details and references on mercury issues above.

See also Good Greek Philosophy

But what about LEDs?

LEDs (and OLEDs) are great for TV and computer monitors, for coloured Christmas decoration, signal lights, possibly road illumination, stage lighting, spectacular lighting design (such as could be seen during the last Olympics) and many other creative purposes, just not as replacement bulbs for home illumination. Even industry leaders don’t seem to believe in that concept, as they know of the many challenges and that this is not the area in which LEDs perform best.

Most LED replacement bulbs available to consumers today are a joke when it comes to light colour, output and price. There are a few decent looking ones from top brands, but the prices on those are even more of a joke, and how long they last and give a useful light is still unknown. Many have electromagnetic compatibility (EMC) issues and may cause grid disturbances. Most are not dimmable, and the ones that are do not dim well.

But what about halogen energy savers?

Well, they give the same type of top quality light, can be dimmed nicely and have all the other advantages of incandescent light, plus longer life. But recent consumer tests disappointingly show that they don’t save as much as promised. They also contain bromine or iodine and can be quite glaring unless shaded or frosted.

Unfortunately, frosted bulbs were also banned by the EU in the first stage of the phase-out 2009, due to wanting to force the majority who likes frosted glare-free lamps at home to buy CFLs instead – that was the whole point of the ban. (Not that CFLs are always glare-free, but they can pass for ‘frosted’ by their phosphor coating.)

That the halogen energy saver is still permitted for a few more years was a temporary compromise, as there exists no clear bright point replacement for when such is desired. Its existence on the market – although at first, very hard to find – has been used by the Commission to stifle all the numerous complaints about CFL shortcomings: “But for those applications, you can use a halogen energy saver!” What the commission doesn’t tell the general public is that halogen lamps will also be banned – unless this regulation hysteria is put to a halt by EU citizens!

Time to ban the ban!

Freedom Lightbulb explains How bans are wrongly justified. Quoting from just one of the many excellent points:

CFLs are simply not suitable for all locations and uses: Hot or cold ambience, vibration, dampness, enclosed spaces, recesses, existing dimming circuits, timers, movement sensor switching, use in chandeliers and small and unusual lamps, aesthetical use if clear bulbs are preferred, rare usage when cheaper bulbs are preferred – and so on – apart from light quality differences, particularly noticeable when dimming. Usage in children’s rooms might be restricted on breakage and mercury release issues, see point 10 below.

LEDs offer an alternative choice especially for directional lighting – but otherwise, with several similar location and usage issues to CFLs, as well as having their own light quality issues in spiky emission spectra. LEDs also have even more light output problems than CFLs to achieve bright (75-100W and over) omnidirectional lighting equivalence, and at reasonable cost.

To put it bluntly:
Incandescent technology is optimal in BULB form,
Fluorescent technology is optimal in TUBE form,
LED technology is optimal in SHEET form.
Fluorescent and LED lighting technology advantages are compromised in trying to replace what incandescents can do.

You don’t make savings by regulating what products are on the market – unless they’re toxic, then you remove them for environmental and health reasons. You do it by using the appropriate lamp type and brightness for a particular environment and task, and by tuning it down or switching it off when not used. Lighting designer Kevan Shaw points out the obvious in Ecodesign Regulation Failure? (emphasis added):

As has been shown in previous studies the amount of lighting energy used in households is far more dependent on behavior than the type of lighting equipment used. Ultimately the length of time a light is left switched on has significantly more influence on total energy used than the wattage of the lamp. Another interesting point is that the proportion of electricity used in households for lighting is now being overtaken by that used for Audio Visual and Computers in the home. Despite this no one so far is proposing that plasma large screen tellys are banned in favour of LED types that use a fraction of the electricity!

Also, you can make an incandescent or halogen incandescent both use less electricity and last longer by simply dimming it – something many are already doing! Jim on Light:

Dimmer maker Lutron says that by dimming a halogen lamp by 30% will give you many of the same benefits as using a compact fluorescent lamp.  Lutron also says that a 3,000 hour halogen lamp will last 12,000 hours when dimmed by that 30%.

As Freedom Lightbulb frequently points out: people are not stupid. If there was a better product that truly saves both money and the environment and last as long as promised, we would buy it without being forced. We gladly buy energy-star fridges and washing machines. We have willingly followed energy authorities’ advice on better insulation of our houses; taking a shower instead of a bath; switching appliances off instead of leaving them on stand-by; turning lights off when leaving the room; installing sensors, timers and dimmers. We recycle and try to be as green as we can manage and afford.

All EU authorities need to do is enforce the energy and performance information on the package label, make tests to check that it’s accurate, and leave us all free to make our own informed choices on what we want to spend our hard-earned money on.

The market failure of incandescent replacements is a product failure, and banning the original high quality product in order to force an unwilling public to pay more for a problematic and lower quality replacement is just too absurd for words!

Save the bulb – sign the petition!

Here is a German petition to revoke the ban. It’s not very well written, but please sign anyway – every vote counts:

-> Avaaz petition to repeal the EU ban

Edit: Two more German petitions to sign (thanks to Lighthouse for the links):

Update: The incandescent ban is actually illegal as the replacement lamps have not fulfilled criteria a, b and c in the Ecodesign Directive. Se my updated post New EU Ecodesign Directive

EU Light Regulations Expanded

Updated Aug 20

Translated and condensed from Swedish Energy Agency’s website.

Reflector lamps, LED and halogen

Now LED and reflector lamps will be included in the regulation and energy label reqirements.

On July 13, the Committee for Eco-design agreed on the regulation proposal for reflector lamps, LED lamps and related equipment. If accepted, the new requirements will take effect from September 1, 2013. With this new regulation virtually every light source is covered, as the requirements for omnidirectional, road and office lighting is already in place.

The new requirements are introduced in four stages so that manufacturers, importers, retailers and consumers will have time to convert:

Step 1: September 1, 2013 
Between Steps: March 1, 2014 
Step 2: September 1, 2014 
Step 3: September 1, 2016

The requirements set for reflector lamps such as halogen lamps (230 V and low voltage), discharge lamps and LEDs. Omni-directional LED bulbs, which previously only had the energy efficiency requirements, are now also included, as well as related equipment, i.g. the driver and controllers for lighting.

OLED lights are still excluded because this technique is still regarded as immature, but may be included in future revisions of the regulation. 

The regulation includes both energy efficiency and function. Typical performance criteria are longevity, number of ignition and extinction cycles, start time and color capabilities. In addition there are demands for expanded information about the light that should be on the lamps themselves, packaging, and specific sites. This makes it easier for both common and professional users and clients in the selection of lighting solutions.

It seems then, that the original time table for different lamps, as described in my 2009 ban summary, is being kept by the EU. Meaning that from 2016, all halogen lamps must be Energy Class B, which only the very expensive Philips halogen bulb with infrared coating and integrated transformer achieves. And that lamp is currently nowhere to be seen… (I managed to locate one in a small special lamps shop in Stockholm a couple of years ago and it was nice and bright but didn’t last very long.)

This may mean that all the mini halogen bulbs for low-voltage reflector lamps are also banned from that date! The industry wants to see all halogen lamps gone and replaced by much more profitable CFLs and LEDs, and EU politicians willingly oblige. Some of the more attractive metal halide lamps that have made many shops more brightly and beautifully lit since the 90’s may also be at risk. But no one is really sure exactly which lamps will be removed, even professional lighting designers are being kept in the dark! And possibly for quite appalling reasons:

From PLDA Greenpages (emphasis added):

The current draft legislation for reflector lamps, the final draft of which is dated January 2012, will result in the phasing out of several types of lamps, with mains, low voltage and metal halide reflector lamps most likely to be affected. The signals are clear that there will be significant reductions in the availability of these lamps from September 2013, with further reductions scheduled for 2016.

The concern is that specification of these lamp types could lead to a risk of Professional Indemnity Claims if said lamp types could not be provided for installation after September 2013.  Specification of products which then become unavailable from September 2013 would likely result in claims from clients regarding delays and mis-specification.

The main problem is that there is insufficient data available to determine exactly which lamps will be phased out, the specification of which should be avoided accordingly, as manufacturers and legislators have not, at the current time, provided the necessary information.

Changes in Reflector Lamps Legislation may prove problematic for Lighting Designers

This seems to be quite in line with EC behaviour openly on their website too. For the general public, one graph is provided that makes it seem like halogen energy savers (class C ‘improved incandescent bulbs’) will be permitted indefinitely, while the timeline in the information material for professionals tells another story.

Public timeline from Changes – bulbs and packaging

Professional timeline from Frequently asked questions

Tighter standards & new labels

Looking at this last regulation installment, one thing that strikes me is the stunning amount of regulation and label info needed for CFLs and LEDs to cover all the technical issues they have, in order to produce just a little more light per watt:

(a) Nominal useful luminous flux displayed in a font at least twice as large as any display of the nominal lamp power;

(b) Nominal life time of the lamp in hours (not longer than the rated life time);

(c) Colour temperature, as a value in Kelvins and also expressed graphically or in words;

(d) Number of switching cycles before premature failure;

(e) Warm-up time up to 60% of the full light output (may be indicated as ‘instant full light’ if less than 1 second);

(f) A warning if the lamp cannot be dimmed or can be dimmed only on specific dimmers; in the latter case a list of compatible dimmers shall be also provided on the manufacturer’s website;

(g) If designed for optimum use in non-standard conditions (such as ambient temperature Ta ≠ 25°C or specific thermal management is necessary), information on those conditions;

(h) Lamp dimensions in millimetres (length and largest diameter);

(i) Nominal beam angle in degrees;

(j) If the lamp’s beam angle is ≥90° and its useful luminous flux as defined in point 1.1 of this Annex is to be measured in a 120° cone, a warning that the lamp is not suitable for accent lighting;

(k) If the lamp cap is a standardised type also used with filament lamps, but the lamp’s dimensions are different from the dimensions of the filament lamp(s) that the lamp is meant to replace, a drawing comparing the lamp’s dimensions to the dimensions of the filament lamp(s) it replaces;

(l) An indication that the lamp is of a type listed in the first column of Table 6 may be displayed only if the luminous flux of the lamp in a 90° cone (Φ90°) is not lower than the reference luminous flux indicated in Table 6 for the smallest wattage among the lamps of the type concerned. The reference luminous flux shall be multiplied by the correction factor in Table 7. For LED lamps, it shall be in addition multiplied by the correction factor in Table 8; 

(m) An equivalence claim involving the power of a replaced lamp type may be displayed only if the lamp type is listed in Table 6 and if the luminous flux of the lamp in a 90° cone (Φ90°) is not lower than the corresponding reference luminous flux in Table 6. The reference luminous flux shall be multiplied by EN 22 EN the correction factor in Table 7. For LED lamps, it shall be in addition multiplied by the correction factor in Table 8. The intermediate values of both the luminous flux and the claimed equivalent lamp power (rounded to the nearest 1 W) shall be calculated by linear interpolation between the two adjacent values.

If the lamp contains mercury:

(n) Lamp mercury content as X.X mg;

(o) Indication of which website to consult in case of accidental lamp breakage to find instructions on how to clean up the lamp debris.

So, 16 different parameters to learn and keep in mind, plus websites to consult for safety instructions, just to buy a simple lightbulb!!

When buying an incandescent bulb, all you needed to know was watts and type of base.

All incandesent bulbs switched on immediately; worked with timers, dimmers and sensors; dimmed beautifully; worked just as well in the oven as in the freezer; worked in any position; power factor was perfect; colour rendering was perfect; light colour adjusted itself perfectly along the Planck curve according to brightness; life span was predictable and was not shortened by switching it off within 15 minutes of use. You knew that if you wanted to save energy, you either dimmed the lamp or simply turned it off when not needed.

And when producing it, you stuck a piece of tungsten in a glass bulb, put a metal screw base on it, replaced the air with some inert gas and that was it. Easily done in a local factory.

You did’t have to go mine for toxic metals and phosphors, manufacture various components all over Asia and then ship them to China for assembly, then ship the finished lamps to Europe, then collect them again after use to recycle the toxic elements. Or keep tweaking it for 3o years to get it to only almost resemble incandescent light, almost give as much light as promised, and almost (but often not) last as long as promised, while still having all those issues that the EU Commission now finally sees fit to regulate and require on the label.

Don’t get me wrong. I think it’s excellent that this info is now required on the label! That’s what national and federal authorities should be there for, to keep the free market in check and make sure it delivers what it promises. These mandatory labels should have been required years ago, but then the Committee either didn’t know about all these issues or chose to ignore them. I only hope these requirements will be forecefully enforced, with regular tests and fines and sales bans on any lamp that doesn’t live up to its label info.

But legislating on product labels and doing quality controls is one thing. Banning safe and popular products is truly taking things to extremes.

Link to EC label guide for consumers: How to read the new information displayed on light bulb packaging

See also Freedom Light Bulbs post about the new labels.

The Lightbulb Conspiracies

The 1st Conspiracy (1924-1939) – The Incandescent Bulb

The first conspiracy was presented earlier this year in the documentary The Lightbulb Conspiracy, about planned obsolescence. (Freedom Lightbulb has review, comments and links to the full movie.) Here is a summary of the lightbulb part of the film:

In the early 1900’s, the goal was to make the light bulb last as long as possible. Edison’s lamp lasted 1500 hours, and in the 1920’s, manufacturers advertised lamps sporting a 2500 hour life. Then leading lamp manufacturers came up with the idea that it might be more profitable if the bulbs were made less durable.

In 1924, the Phoebus cartel was created in order to control global lamp production, to which they tied manufacturers all over the world, dividing the various continents between them. In the documentary, historian Helmut High shows the original cartel document that states: “The average life of lamps may not be guaranteed, advertised or published as more than 1 000 hours.” The cartel pressured its members to develop a more fragile incandescent bulb, which would remain within the established 1000-hour rule. Osram tested life and all manufacturers that did not keep the lower standards were heavily fined. Bulb life was thereby reduced to the required 1000 hours.

The film claims that there are patents on incandescent light bulbs with 100 000 hours lifetime, but they never went into production – except Adolphe Chaillets bulb of Livermore Fire Department in California, which has burned continuously since 1901. In 1981, the East German company Narva created a lamp for a long life lamp and showed it at an international light fair. Nobody was interested. (It later became accepted as a special ‘long-life’ lamp but was never a commercial hit.)

Wikipedia states that the Phoebus cartel included Osram, Philips, Tungsram, Compagnie des Lampes, Associated Electrical Industries, ELIN, International General Electric, and the GE Overseas Group. “They owned shares in the Swiss corporation proportional to their lamp sales.”

“The Phoebus Cartel divided the world’s lamp markets into three categories:

  1. home territories, the home country of individual manufacturers
  2. British overseas territories, under control of Associated Electrical Industries, Osram, Philips, and Tungsram
  3. common territory, the rest of the world

In 1921 a precursor organisation was founded by Osram, the Internationale Glühlampen Preisvereinigung. When Philips and other manufacturers were entering the American market, General Electric reacted by setting up the International General Electric Company in Paris. Both organisations were involved in trading patents and adjusting market penetration. Increasing international competition led to negotiations between all major companies to control and restrict their respective activities in order not to interfere in each other’s spheres.”

According to the documentary, the cartel officially never existed (even though their memorandum remains in archives). Their strategy has been to rename all the time, but still exists in one form or another. The film mentions The International Energy cartel, but that seems to be more about controlling world energy production rather than light bulbs specifically.

See also: Freedom Lightbulb: Light Bulb Testimonial

Update: found an Osram pdf (nicely spotted!) where the Pheobus is mentioned, though of course not called a cartel but “an agreement”. Quoting from pp. 31-33:

The world light bulb agreement (Phoebus agreement)

Soon after OSRAM was founded its chairman, Dr. William Meinhardt, made it his mission not only to unite the German light bulb industry but also to achieve international cooperation among similar companies. His aim was to build bridges and make connections to bring the world’s leading companies closer together. The conditions for such a move were favourable. Preparatory negotiations lasted many years until finally in 1924 Dr. Meinhardt’s initiative bore fruit in the form of the “General Patent and Development Agreement”. A company called Phoebus S.A. was founded under Swiss law. Its highest decisionmaking body was the general assembly. The chairman of the administrative board (supervisory board) was Dr. Meinhardt.

This “world light bulb agreement” was one of the most far-reaching international agreements. It included the most prominent manufacturing companies in the world, with the exception of those in the USA and Canada (through with their agreement) as direct members.

Representing Europe were OSRAM from Germany, Philips from Holland, G.E.C. from the UK, the Compagnie des Lampes from France, Kremenezky from Austria, Tungsram from Hungary, the Società Edison Clerici from Italy and companies from Spain. Swedish and Swiss companies provided a representative together with medium-size German light bulb manufacturers. The initial agreement was set to run for ten years but it was extended in view of its success. It was nullified in 1940 because of the war.

To maintain the effectiveness of the agreement it was necessary to set up a streamlined organisation. The arrangements were generously adapted to suit the purpose of the agreement. 

The agreement related to all electric light bulbs used for illumination, heating or medical purposes. Arc lamps, neon lamps, x-ray lamps and radio tubes were excluded. If, during the course of the agreement, new light sources of general importance were developed they could be included in the agreement. This applied later to fluorescent lamps.

The 2nd Conspiracy (1938 and onwards) – The FL Tube & HID Lamps

OK, this one is perhaps more of a Zeitgeist thing than an actual thought-out conspiracy since at the time it was generally thought that, after millennia of dim lighting, light quantity was always a blessing and quality of no importance at all. It was also an era of industrial optimism and a complete unawareness of environmental and health effects of various toxic chemicals found useful in everyday applications.

So, in the 1929s and 30s, along with functionalism in architecture, there was a great rush to find new and more efficient ways of illuminating work places and public areas. The fluorescent tube (FL) seemed to be the answer and the first tubes were marketed in 1938. But then came WWII.

The situation after the war was ideal: a clean slate upon which to build massive functionalistic buildings lit by overly bright fluorescent light everywhere. Again, likely by the coordinated effort of the lighting industry, the FL tube became the standard light in offices and residential building common areas, as well as in home owners’ kitchens and basements – despite the light quality being outright appalling.

High Intensity Discharge (HID) lamps such as the Mercury Vapour lamps were used factories and cast a harsh eerie blue-green light on public streets; in the 60s joined by Sodium Vapour and Metal Halide lamps (which are Mercury Vapour lamps with halogens added for improved light colour and colour rendition). Not that there was a better alternative at the time: short-lived and ineffective incandescent lamps would not have been practical for road illumination (though there were combination lamps for a time, where the incandescent helped ignite the MV lamp). But some might have preferred to have more quality light than quantity indoors, e.g. in schools and offices, like in earlier decades.

Mercury-based FL/HID light continued through subsequent decades to be spread into every area of human life, eagerly pushed by lighting industry organisations (e.g like Belysningsbranschen in Sweden and their equivalents in other countries) who issue professional lighting standards for all public spaces.

By the 1980s, mainly private homes and some commercial areas such as restaurants, hotels and small shops remained incandescent. But even such romantic sanctuaries were not to be left alone.

The 3rd Lightbulb Conspiracy (1985 and ongoing) – The CFL

This self-confessed conspiracy by lamp companies and utilities and national energy agencies has already been outlined in The Global Anti-Lightbulb Campaign, and on the New Electric Politics site Shining a Light on Politics and Light Bulbs.

When I wrote that first post two years ago, I was not aware of the first lightbulb conspiracy, but the info about the Phoebus cartel provided the last pieces of the puzzle as to how lamp manufacturers were able to pull off the CFL scam and get a global ban of their by then unprofitable product (the incandescent bulb) in such a short time. One only has to check the ELC (European Lamp Companies Federation) website to see that lamp manufacturers are still extremely well organized, and now brag openly about their lobbying:

We represent the leading lamp manufacturers in Europe. 95% of total European production. 50 000 employees in Europe. 5 billion EURO European Turnover  – view lamp statisticsWe are an international non profit-making association under Belgian law with a secretariat in Brussels. We are a flexible, light & efficient decision-making lobby organisation. See our views on climate change & energy efficiencyRecent newsWe were created in 1985 – view our structure.

Interesting date 1985… right before the CFL was released on an unsuspecting public.

Utilities and national market transformation programmes now also brag openly about how they managed to increase public acceptance of substandard CFLs by addressing consumer concerns with blatant propaganda (see The Global Anti-Lightbulb Campaign for details).

As for utilities’ part of the scheme, see New Electric Politics

Then in 2009, the conspiracy moved up to United Nations level, with a chance for lamp manufacturers to get subsidies for dumping their unwanted CFLs on unsuspecting Asian and African countries – who a) won’t be informed of the mercury content and other issues and b) are very unlikely to have efficient recycling plans and facilities set up – while getting a green halo for their saintly ‘environmental’ efforts.

“There is growing momentum now, and a very aggressive timeline to address the emerging issues of climate change. We have learned a lot in Europe and the United States over the past few years, and need to apply that in the emerging marketplaces of developing countries,” said Kaj den Daas, CEO, Philips Lighting North America.

I suspect the “aggressive timeline” has more to do with a need to squeeze out as much remaining profit as possible from the CFL before environmentalists wake up to the scam and mercury-free alternatives take over the market. It’s not like they’re going to give away free LEDs or halogen lamps to poor people in developing countries…

The result of this UN – lighting industry cooperation was the en.lighten initiative. Wikipedia has a handy description of it:

“As part of global efforts to promote efficient lighting, United Nations Environment Programme with the support of the GEF Earth Fund, Philips Lighting and OSRAM GmbH has established the en.lighten initiative. The initiative seeks to accelerate global commercialization and market transformation of efficient lighting technologies by working at the global level and providing support to countries.”

See my post Global Ban Craze for details on the deceptive numbers used in the 2009 press release, now perpetuated on the new site.

“Electricity for lighting accounts for almost 20 per cent of global power consumption and close to 6 per cent of worldwide greenhouse gas (GHG) emissions. If a global transition to efficient lighting occurred, these emissions could be reduced by half.”

See also Freedom Lightbulb for info and comments on the en.lighten initiative.

Edit 1 aug: Yesterday, Freedom Lightbulb posted more proof of the bulb ban conspiracy with an article from 2010 by two dutchmen about the findings of journalist Syp Wynia on how the incandescent bulb ban was achieved through cooperation between Dutch Philips and Greenpeace. Original article:  The Unholy Alliance between Philips and the Greens

Philips, the company involved, started in 1891 with the mass production of Edison lamps, at its home base, Eindhoven, Netherlands. There existed no international court of justice at the time, so they could infringe on US patent law with impunity. In the past 120 years it has expanded continuously, to become the multinational electronics giant it is today. Because nostalgia seldom agrees with the aims of private enterprise, Philips started lobbying to phase out the very product on which its original success is based. They started this campaign around the turn of the century, ten years ago.

Their line of thought is clear: banning incandescent bulbs creates an interesting market for new kinds of home lighting, such as “energy savers” (CFL’s, compact fluorescent lamps) and LED’s (light emitting diodes). The mark-up on these new products is substantially higher than that on old-fashioned incandescent bulbs. The rapid expansion of the lighting industry in China makes the profit margin on ordinary bulbs from factories in Europe smaller yet.  (…) 

Multiple government campaigns, aimed at promoting the idea that energy savers contribute to the well-intentioned goal of reducing the energy consumption of households, failed to convince citizens. 

The spectre of catastrophic climate change offered a new opportunity for the strategists and marketing specialists at Philips headquarters. They changed their marketing concept and jumped on the Global Warming band wagon. From that moment on, energy-saving bulbs could be put on the market as icons of responsibility toward climate change. This would give Philips a head start in the CFL end LED business. The competition would be left far behind by aggressive use of European patent law. That strategy fitted like a glove with that of the environmental movement. For them, ordinary light bulbs had become the ultimate symbol of energy waste and excessive CO2 emissions. Seeing the opportunity, Greenpeace immediately made a forward pass with the ball thrown by Philips’ pitchers. The incandescent bulb would serve as an ideal vehicle for ramming Global Warming down people’s throats. No abstract discussions about CO2-emissions any more: a ban on bulbs would suffice.

The 4th Conspiracy (c. 2005 and ongoing) – The LED

Since at least 2005, the U.S. Department Of Energy (DOE) Energy Efficiency & Renewable Energy department have had their main focus on solid state lighting (SSL), which is a fancier name for LED. Market Studies and Technical Reports

Naturally in cooperation with leading vested interests such as Philips, Cree, Lumileds Lighting Company, Dow Corning, General Electric, Osram Sylvania and Eastman Kodak (examples from this document: Energy Savings Potential of Solid State Lighting in General Illumination Applications) who made projections spanning 20 years, from 2007-2027, and seem to consider LED (and eventually OLED) to be the optimal replacement for pretty much all other  lamp types in all sectors, but especially for the “high CRI” (CFLs and T8 FL tubes) and “very CRI” (incandescent, halogen) groups in the residential and commercial sectors.

“In both the LED and OLED scenarios, SSL displaces light sources in all sectors by the end of the analysis period, but the significant energy savings are primarily from the displacement of incandescent lamps in commercial and residential applications.”

So, with the pesky incandescent bulb out of the way, and more and more people becoming aware of or experiencing first hand the many drawbacks of CFLs, now the whole circus starts over again with yet another hyped incandescent replacement. Again at ridiculous prices, with more or less appalling light colour, suboptimal colour rendition, dimming problems, heat sensitivity and a promised life that still remains to be seen.

Does this sound familiar? Story of the CFL, for which millions have paid hefty prices to get substandard lamps which only now, after 20 years, appear decently incandescent-looking, decently affordable (due to heavy sibsidies) but still have most of the other problems left. So, do we now have to wait another 20 years for the LED to become decent-looking, affordable and working as promised, while paying even more hefty prices for being consumer guinea pigs in the mean time?

Alas, the Lightbulb Conspiracy film maker didn’t see through this one. Instead a younger generation Philips got to present ‘his’ new generation bulb: the LED, as if he personally made the whole lighting industry suddenly wake up with a bad conscience and now truly wants home bulbs to last for 25 years, hahaha! I predict that future consumer tests will show LEDs lasting a lot less than 25 000 hours, or become dim enough to be useless long before that.


I also suspect that those of us who have spent years revealing all the dirty little secrets of CFLs, are probably in a way just helping to prepare the ground for the LED. (Like with pharmaceutical drugs… First they’re so great. No end to how great they are… Then, when patents start running out, suddenly there is a flood of articles, news snippets and anecdotal reports in less discriminating media revealing all the problems with them – which, of course, have been there all along. But, as it happens, the good news is always that there is now a new and better medicine for that particular health issue. Which is of course is really great… Until that patent starts running out, then it may turn out that the new drug had even more problems than the first one.)

Those of us who genuinely believe that natural, healthy, beautiful light is as basic a human need and right as clean water, food and air, are of course no willing participants in such a scheme, but something to be mindful of.

U.S. Incandescent ban – will it save the planet (and my economy)?

Possibly not as much as you may have been led to believe. But decide for yourself with the official government data from my newly updated Energy Statistics post:

A. The residential sector (private households) total energy consumption is 12% of total delivered U.S. energy.

B. Of total delivered energy to the residential sector, 58% comes from various fuels (oil, kerosene, natural gas, renewable etc) and most  is used for space heating. The remaining 42% comes from electricity and is split as follows (my own pie chart, from two different EIA ingredients):

C. Lighting uses around 15% of household electricity and 6% of total household energy consumption.

DIf all household lamps were incandescent, the replacement bulb might save (depending on what type and quality of lamps one replaces them with, how often and how long they are used, how long they last etc) 25 -75% =  1.5 to 4.5% (optimistically) of total household energy consumption.

E. But not all household lamps are incandescent since many have already switched to CFL or LED, and already had about 5% linear fluorescent lamps. According to a July 2011 Energy Star report, CFLs accounted for nearly 28 percent of all residential light bulb sales. This leaves 67% standard incandescent. Of which not all are suitable for replacement (e.g. in bathrooms, hallways, in small or antique luminaires or luminaires designed specifically for halogen or LED etc). So, say 50% left that could be switched = 0.75 to 2.25% potential savings savings of average total home energy use (could be more or less in any individual household).

This is not a lot, is it? True that every little bit counts, and any little bit that can be saved is for good of everyone. But at what cost?

I. The first cost is light quality.

CFLs have a Color Rendering Index of 82-85. This means you get a duller light and won’t be able to see colours as well. A simple trading of quality for quantity, just like in the office. If you don’t mind that in your home, that’s fine then.

LED quality can vary widely between manufacturers. LED lamps have CRI of 75-92. They often reflect more of the spectrum, but the light color can still be off and it will lack the vibrancy of incandescent light.

Halogen Energy Savers will save less (25-30%) but give top quality light with perfect color rendering capacity, as it is also a form of incandescent light.

II. The second trade-off is health & safety.

CFLs contain small amounts of highly toxic mercury vapor and should never be used around children, pets or pregnant women, in case they break. There are silicon-covered bulbs on the market that don’t shatter as easily, but most don’t have that protection. All CLFs must be recycled safely and never thrown in the trash. Some CFLs also emit some UV-radiation at close range. May not be enough to pose much of a risk to a healthy person unless used very close for prolonged periods of time, but persons with UV-sensitive conditions may have adverse reactions.

LEDs have been shown not to be quite as green and non-toxic as assumed either, but probably safer than CFLs.

•  Incandescent lamps, including halogen, contain no toxins and pose no known health risks.

So, why go after the tiny portion that is used for lightings pecifically, while we keep using more and more other electrical gadgets? A chart from the EIA page Share of energy used by appliances and consumer electronics increases in U.S. homes shows how the electronics pie slice has grown to almost twice its size since the 1970s:

Isn’t it interesting also that the total household energy use has hardly changed since 1978 (!) while the proportions of how that energy is spent has changed dramatically? This seems to me pretty solid proof of the often-scoffed-at Jevons paradox and may pose more risks when switching to energy saving lighting.

1. The first is that one may feels one has done so much for the environment that not much more needs to be done. This impression is enhanced by the fact that the switch may make a big change in a room’s apperance (and not always to the better) and by the fact that CFLs have been promoted by everyone, from gazillions of bloggers and journalists to state presidents as the one thing that will make a difference. (And they in turn have been targets of two decades of multi-million dollar lobbying to make them belive that.)

2. The second is that since one belives one is saving so much on the lights, one can leave them on for a bit longer. An article comment illustrates this sentiment well:

“My dad switched to CFLs, but now he just leaves the lights on all the time because he says ‘they use so little power, I can’t be bothered to turn them off’.”

3. Many CFLs are also supposed to be turned on for 15 minutes to 3 hours at a time in order not to shorten their life dramatically.

But if you still want to save a little, and if you opt for the least less energy saving but non-toxic, top quality halogen lamp, you can easily save the remaining 1.5% by turning the heating or cooling down a degree or two, taking shorter showers, skipping coffee & toast, using dimmers and turning lights off when you leave the room and still have a green conscience.

Q&A about the U.S. Incandescent ban

Q: Is it a ban or not?

A: Yes and no. It is not a ban per se (such as in EU and other countries) but a raising of the efficacy standards to a level which normal incandescent lamps cannot reach. The end result is still the same, as far as the original Edison bulb is concerned.

Q: What lamps are affected? 

A: In this first stage of the gradual ‘phase-out’, starting January 1st, 2012: incandescent bulbs of 100 watts or more.

New edit: After debating whether 75 watts are also prohibited or not – which they officially are not until next year – Freedom Light Bulb discovered that the regulation is even more bizarre than we first thought:

US Regulation Absurdity: Dim 100W bulbs allowed, Bright 100W bulbs banned!

If you want incandescent you can still buy 72 watt tungsten halogen Energy Savers and get as much light as from a 100 watt lamp (see my Halogen Energy Savers review). If you can find them. Amazon sells them, Home Depot only have reflector lamps, Lowe’s have more flodlight reflector models, but they can be hard to find in regular stores (ask for them).

Q: So now 75 and 100 watt bulbs can’t be produced or imported?

A: Yes and no. In the words of Kevan Shaw: “The ban is still effectively in force in law however it cannot be enforced.”

Read the longer explanation of this confusing issue here: The American Ban Collapses

And here: After the Funding Amendment: Clear Explanation of American Light Bulb Regulations

Follow the progress state by state here: Progress Track of US Federal and State Ban Repeal Bills


The inability of DOE to enforce the standards would allow those who do not respect the rule of law to sell inefficient light bulbs in the U.S. without fear of enforcement, creating a competitive disadvantage for compliant manufacturers.

As standard incandescent lamps are no longer as profitable to make or sell, the risk of that happening is probably negligible. If you can find a higher watt bulb anywhere you’re still free to buy it, but people have been hoarding.

Leading manufacturers couldn’t wait to get rid of the bulb, so they started closing their North American bulb factories in 2009 and the last major U.S. bulb plant was closed in September 2010.

And just a few days ago IKEA proudly announced that they will not sell any incandescent lamps (spinning more-$$$-for-IKEA-from-new-$14-LEDs to sound like “IKEA-saving-the-planet”). More retailers may follow, regardless of how the dispute ends.

And California started the phase-out a year early.

So choices and availability for top quality incandescent light are shrinking, while choices for lower quality but somewhat more energy efficient CFL and LED lights have increased to a confusing profusion which can make finding the right lamp rather difficult.

Q: So, whose fault is this anyway? Who came up with the idea? Those pesky treehugging-commie Democrats, or the reactionary out-of-my-cold-dead-hands Republicans? 

A: Well, both. The original light bulb legislation was written by Fred Upton (R-MI) and Jane Harmon (D-CA) says CNS News.

“In 2007, Harman and Upton introduced bipartisan, bicameral legislation–which became law as part of the Energy Independence and Security Act–that bans the famously inefficient 100-watt incandescent light bulb by 2012, phases out remaining inefficient light bulbs by 2014, and requires that light bulbs be at least three times as efficient as today’s 100-watt incandescent bulb by 2020,” explained a 2009 press release put out by the two House members.

The bill was passed under the Republican Bush administration and signed by president G.W. Bush in 2007. President Obama and the Democratic party have embraced it. However, Upton later changed his mind, as did many other Republicans (and many didn’t think it was a good idea in the first place). And now this issue has been turned into a symbolic item for both parties to fight each other over.

Hope that cleared it up. 😉

Edit: Good article about the ban: Five Myths About the Federal Incandescent Light Bulb Ban

New EU Ecodesign Directive

Updated Dec 2012

Let’s look at the crucial parts of the European Union’s amended (Oct 2009) Ecodesign Directive:

5. Implementing measures shall meet all the following criteria:

Please notice the word “all”.

(a) there shall be no significant negative impact on the functionality of the product, from the perspective of the user;

• With CFLs, the user gets poorer quality light with suboptimal colour rendering (CRI 81-83 of 100), sensitivity to heat, cold, moisture and frequent switching (not recommended for bathrooms and shortly visited spaces); that may not fit well in many existing luminaires; is often incompatible with dimmers, (will fry existing electronics); may cause disturbances on the grid and use more power than marked watts; has recycling difficulties (being hazardous waste they must be taken to special recycling facilities, often reachable only by car, instead often contaminating other recycling materials); and risk of mercury contamination of one’s home if accidentally broken.

• With LEDs, the consumer gets a poorer quality, dimmer light with often strange light colour, dimmability problems, suboptimal colour rendering; extremely high purchase price and poor electromagnetic compatibility (may disturb the power grid and other electronic devices).

• With clear class C Halogen Energy Savers, you get good quality light but more glaring and can get very hot. Frosted would be ok but they were banned 2009. Clear class C halogen lamps will be banned 2016.

• With clear class B Halogen Energy Savers with integrated transformer; glare, higher EMFs, very high price, and not available on the market at all! The only European manufacturer who made these lamps for a few years, Philips, replied when asked a direct question, that that they have no plans on re-introducing this halogen lamp on the market, and that all R&D will go towards developing [the more profitable] LEDs.

–> Thus, this condition is not fulfilled.

(b) health, safety and the environment shall not be adversely affected;

CFLs can not be considered anywhere near safe for health or environment as long as they are breakable and contain highly toxic mercury vapour. Increased mercury mining in China due to rising demands from the West is causing an environmental disaster in AsiaCFLs  may also emit other carcinogenic chemicals and UV radiation (through cracks in the phosphor layer in the inside of the tube).

LEDs can also flickercontain toxic chemicals, emit potentially harmful amounts of blue light and cause health problems for a number of patient groups, as well as disrupt circadian rhythms.

As there are also many patient groups, an estimated 250 000 light sensitive people in EU which SCENIHR thinks will be adversely affected, and anecdotal evidence for even more patient groups reporting everything from subjective discomfort or serious illness in FL/CLF and LED light. Others have estimated that 2 million will be affected in the UK alone.

–> Thus, this condition is not fulfilled.

(c) there shall be no significant negative impact on consumers in particular as regards the affordability and the life cycle cost of the product;

• The reason standard CFLs are now more affordable, besides competition from poor quality no brand bulbs, is that they are often subsidised by tax moneyYour tax money. And you may also be paying an extra nominal fee on your electricity bill to compensate for the poorer power factor of most CFLs, LEDs and other home electronics. In both cases: whether you’re actually using them or not.

• Dimmable CFLs and LEDs are still prohibitively expensive to buy, even if they allegedly last longer. And most of the replacements don’t save as much as claimed, give as much light as the lamp they replaced, or last as long as promised. Burned-out CFLs often have to be delivered by car to special collection places, or to recycling stations for hazardous waste.

• Recovery of the higher purchase price is dependent on the product lasting as long as advertised, something which CFLs continue to fail even under optimal lab testing conditions, and even more so in real life conditions where they easily get overheated or get switched on-and-off more frequently than recommended etc. The promised life of LEDs still remains to be proven. As CFLs and LEDs become dimmer over time and some also change colour, they may neeed to be replaced even before they burn out prematurely.

• Savings are also 50-60% less in North Europe due to the scientifically established Heat Replacement Effect.

• The whole life cycle cost of the product typically never includes the mining of the mercury, phosphors and rare minerals in Asia, and all the cost to health & environment for the workers there. Nor for the shipping of the many electronic and chemical parts over Asia for assembly in a specific factory; shipping by polluting oil tankers from Asia to Europe; transport to recycling facility for toxic waste after the lamp has burned out; and then for the complicated recycling process to recover the mercury and cleaning the glass; and finally for depositing the mercury and other toxins as they cannot be exported from EU according to the RoHS Directive.

• If a CFL breaks in your home, you should first of all already have bought an expensive mercury spillage kit for safe clean-up. Then you may have to replace all carpets, textiles and other contaminated things in that room. If your children inhale the noxious mercury vapour, they may become sick and develop learning disabilities for life. What is the cost of all this?

–> Thus, this condition is not fulfilled.

(d) there shall be no significant negative impact on industry’s competitiveness;

(e) in principle, the setting of an ecodesign requirement shall not have the consequence of imposing proprietary technology on manufacturers; and

(f) no excessive administrative burden shall be imposed on manufacturers.

I’ll leave that part for manufacturers to comment, on the remote chance that they find anything to complain about, as the ban has been a direct result of their lobbying. But they have had to change the lamp labels to include much more information than earlier. And I believe leading lamp manufacturers hold most of the patents for creating decent LEDs.

= As A, B, C are clearly not fulfilled, the incandescent phase-out is invalid and should be revoked immediately. 

• Furthermore, naked tube & spiral CFLs for private use should be banned effective immediately, as they are a hazard to health and environment both! This is very urgent and imperative!

• LEDs should also be restricted to professional use only, due to the blue light hazard – which is greatest for children and certain patient groups – and/or only warm-white LEDs allowed on the market.

• A special ban on cool white/light blue lamps for vehicle headlamps is urgently needed for safety reasons, as glaring blue-white light is a very real danger to traffic and vision both.

• The old ineffective Mercury Vapour street lights should be banned according to schedule as there are more effective replacements with better colour rendition, such as ceramic metal halide.

All other gas discharge lamps should be permitted on the market in order to offer lighting designers and engineers a full range of options for various situations when lighting public spaces. Different environments call for different lighting solutions, optimised for that particular situation. Sometimes more quantity than quality is needed (e.g. in parks and attractive tourist areas), sometimes quantity and long life is the highest priority (e.g. for illuminating highways). Each type of lighting has its unique qualities and one lighting technology is NOT replaceable by another without getting completely different light qualities. Lighting designers know this and are well educated to choose the most optimal lighting technology for each situation.

Light is a bio-nutrient just like food, air and water, and good light quality should be a basic human right.  The quality, colour, colour rendition, direction and quantity can have a very profound effect on how a space is perceived, as well as direct biological effects on the endocrine system, vision, mood and performance on normal healthy people. Lighting is also one of the most potent mood enhancers at the disposal of an interior designer, architect or lighting designer.

Restricting choices for both professionals and for the general population is just wrong, unless a product is found harmful – such as the CFL and some LEDs.

Banning fire-based incandescent light in order to force everyone to use chemical-technical light is the equivalent of banning water in order to force everyone, including diabetics, to drink only Coca-cola when they are thirsty. That’s how big the quality difference is. Truly. Just check any manufacturer’s online catalogue. Even the best CFLs and LEDs for the consumer market only have 80% colour rendition (CRI) whereas incandescent and halogen lamps have 100%, just like sunlight.

Anyone can see this for themselves by taking a dark room and lighting it first with CFLs or LEDs (especially one’s that have been used for a few years) and then light that same room with only incandescent or halogen light and you will see that in the former you will strain your eyes to see anything through the dim, gloomy, greyish fog.  With incandescent/halogen light you will see and feel like letting in the sun on a cloudy November day; all colours will come alive and look more brilliant, and people will no longer have a sickly pallor.

EU CFL FAQ 2 – Part III b

Comments to part III:12-17 of the EU FAQ #2.

Compact fluorescent lamp environmental impact issues

EU FAQ: III.12. Ecobalance over the life cycle

More materials and energy are needed to produce a compact fluorescent lamp than an conventional incandescent bulb, and it also results in more waste at the end of life. Does this not outweigh the benefits of its energy efficiency?

According to the technical study ordered by the Commission to prepare for the regulation on household lamps (, the impact of energy savings during the use of a compact fluorescent lamp clearly outweigh the environmental impact of its production and its end-of-life. Therefore using them rather than conventional incandescent bulbs reduces the overall energy use and the environmental impact of lighting.

My comment: I’ve read this study and find it flawed, biased and questionable on more counts than I can count. Here are just a few of the more obvious points:

1. Putting clear and frosted GLS in separate classes, despite the difference in output being virtually non-existent and all other things the same, while the widely varying CFL models (bare, covered, dimmable, outdoor, daylight, improved CRI etc) with their equally varying quality levels, efficacies, applications and life spans get represented by one (!) class and (top notch) CFL type only.

2. Using unusual (average, rather than existing) lamp wattages for incandescent lamps, 54W GLS and 13W CFL as base-cases, both with incorrect lumens for their wattage-class, according to leading manufacturer catalogues.

3. Incorrect (too short) life span for typical low-voltage halogen lamps, skewing comparison with other lamp types.

4. Overly optimistic estimations of CFL recycling rates (“20%” in all of EU).

5. Like most pro-CFL ‘studies’, this one does not count the mining process for the mercury and phosphors (stating a “lack of info” on that part of the process). A reader commenting a mercury article online appears to know more: “To produce purified mercury in a CFL, the extraction process releases about 0.4mg for every milligram produced into the waterways, atmosphere, and soil as waste. This is a well-established worldwide average that includes many processes, both crude and hi-tech. This means that the 4mg in the CFL actually represents 5.6mg of mercury that enters our environment.”

6. Making distribution impact estimates on the assumption that all lamps are produced in Europe, while fully aware that most CFLs are produced in Asia:

VITO: “The distribution phase contributes more than 5 % of the life cycle impacts for 11 of the 15 environmental impact indicators. Impacts of this phase are the highest for the emission of PAHs (69 %), heavy metals (22 %), volatile organic compounds (VOC) (21 %), and particulate matter to air. This can be explained by the assumption related to transport in trucks from the retailer’s central warehouse to the shop. (…) according to the MEEuP methodology (section 5.3.6, page 96), a mix of means of transport (trucking, rail, sear freight and air freight) with assumptions on distances was used for all base-cases. This assumption could be considered as disadvantageous for lamps mainly produced in Europe (e.g. GLS-F and GLS-C) and advantageous for lamps produced in Asia (e.g. CFLi). [emphasis added]

7. Not including the energy used to recycle the mercury.

VITO: “Collected CFLi’s at end of life are crushed in a closed installation and sieved. The mercury containing fraction is distilated at 600°C to separate the mercury. The pure, metallic mercury is used again by lamp industry.”

8. Not including all the forced individual driving to remote recycling stations for householders who wish to leave their CFLs for recycling, or to the few retailers who have a recycling program, and then from them to the recycling stations, then transportation from recycling stations to reprocessing factories and from reprocessing factories back to the lamp factories. As Dr Peter Thornes points out on his website, when the lamp industry has their CFL production located in China, that’s where the mercury has to be shipped back to:

“However, it is not just the energy requiring manufacture (after all, CFLs have longer lifespans, which gives some compensation). It is also the greater emissions from their longer transport from the fewer centra in which CFLs are economical to make (China), and it is also the further CFL transport emissions to recycling plants and the emissions of their reprocessing there, and the further transport of reprocessed parts to different locations. This means that inter-continental transport between China and North America/Europe can take place twice, since CFL content including mercury may be shipped back to China for reprocessing and new manufacture. Even more significantly, shipping use of bunker oil, the worst CO2 emitting type of oil, greatly increases the emissions involved (more).”

Sounds like an awful lot of driving, shipping, processing and polluting, doesn’t it?

9. Not including the future costs of brain damaged babies, learning disabled children or lowered general health and mental function of coming generations through slow mercury poisoning of the entire population after millions of CFLs end up in landfills.

III.13. No need to remain on to save energy

Is it true that because of high energy use at start-up, compact fluorescent lamps have to remain switched on for 45 minutes before they bring any energy saving at all?

It is not true that energy saving lamps do not provide energy savings when switched on only briefly. The energy use of compact fluorescent lamps in the first 2 to 3 seconds of their operation is slightly higher, but after that their power uptake is stabilised. In practice, they provide energy savings compared to incandescent bulbs right from the moment they are switched on. Nevertheless, compact fluorescent lamps might not be the proper choices for some applications. If the lamp is switched on both briefly and rarely, the energy savings will counterbalance the higher purchase price of the lamp only very slowly, over several years or even decades. In such a case the much cheaper improved incandescent bulbs with halogen technology should be used. If the lamp is switched on briefly and frequently, it may reduce the lifetime in the case of some compact fluorescent lamps. This functionality is also addressed by the regulation, requiring that compact fluorescent lamps should reach the claimed life time while being switched on/off once for every hour of operation. Where frequent on/off switching is likely, dedicated compact fluorescent lamps that can endure up to 1 million switching cycles, or other energy saving light sources insensitive to switching can be used (such as improved incandescent bulbs with halogen technology which will also remain available). If this is a feature consumers are concerned about, they should look out for the information on the product packaging, where the manufacturers will be required to display the number of times the lamp can be switched on before failure.

In other words, this still is a problem with many CFLs, so use standard CFLs only in lamps that you usually have turned on for longer periods at a time.

III.14. Mercury content and the environment

Compact fluorescent lamps contain mercury, a hazardous material, conventional incandescent bulbs do not. If more compact fluorescent lamps are used, does it not mean more mercury pollution in the EU?

Mercury is present in compact fluorescent lamps in such a small amount that during its lifetime a compact fluorescent lamp (CFL) will have saved more mercury emissions from electricity production in coal power plants (compared to the mercury emissions related to the conventional incandescent bulbs’ electricity need) than is contained in the CFL itself.

This clever PR argument was created in 1991 as part of the organised global anti-lightbulb campaign. It was based on Danish coal use which at that time was the highest in Europe (95%) and a ridiculously low theoretical CFL mercury content of only 0.69 mg. EU as a whole uses much less coal now (29%), and some contries none at all. (See my post Mercury problem increasing for more details.)

Even incandescent-hating consultant firm VITO, when trying their best to find fault with the incandescent lamp and benefits in CFLs in the preparatory study, was unable to produce more than the most marginal Hg reduction (10.9%) when comparing the best performing CFL base-case with the poorest performing GLS base-case and assuming a Hg content of 4mg and an optimistic recycling rate of 20% across EU. Considering the fact that most CFLs used at home don’t perform nearly as well or last as long as the nominal values for that state-of-the-art naked tube CFL (as measured after 100 burning hours in optimal lab conditions, at optimal temperature and burning position wihtout shades) which is always used as base-case CFL, one can safely assume even this small number to be exaggerated as well.

If one wishes to stop mercury emissions, the most logical thing would be to phase out the use of coal (and gold mining!) rather than phasing out an arbitrarily chosen consumer product that uses less than 1% of total energy consumption and contains no toxic substances on its own.

Moreover, CFLs should be recycled according to EU legislation already in place.

Yes, they should. But, as I’ve pointed out before, “should” does not mean they will be. Some have more pressing matters on their daily agenda than safely recycling their lamps. Even in countries with good recycling schemes many peope aren’t aware that CFLs should be recycled (about half the Danes did not know this as of January 2009). Getting them to a recycling station for hazardous goods is no easy thing, especially if you’re elderly or don’t have a car. (See my post about Recycling)

Mercury is an important component of compact fluorescent lamps (CFLs) that plays a key role in their energy efficiency and also other parameters such as lifetime and warm-up times. There are up to 5 milligrams (0,005 grams) of mercury contained in a CFL (compared to 50 milligrams in button batteries, 500 milligrams in dental amalgam filling or several grams in older thermometers). The 5 mg limit is set in the Restriction on Hazardous Substances Directive (2002/95/EC), which in general forbids mercury in electric and electronic equipment, but provides some exemptions in duly motivated cases. The limit is enforced by Member States equally on all bulbs, whether they are cheap Chinese ones or produced by European manufacturers.

But even the Commission’s own consultants in their Domestic Lighting Study found one sample of five tested to contain 6.4 mg – assumed due to manual hand-dripping in Chines non-automated factories – and the Maine DEP found a range of 0.9 to 18 mg! Mercury in CFLs

Compact fluorescent lamps have been widely used in European homes in the past decade, they will not be introduced by this regulation.

But they will be more or less mandated by this regulation as they are not used widely enough in the Commission’s opinion.

Most office and public buildings, and also most streets have been equipped for the last 50 years with fluorescent and high-intensity discharge lamps containing mercury (often much more than compact fluorescent lamps).

But in in public buildings and street lights, the lamps are placed much higher in luminaires that cannot be knocked over, and there are usually routines for recycling them properly after use. But they are of course only safe as long as there are no earth quakes, fires or other disasters. After the 9/11 attack on New York, rescue workers have been getting sick, some from mercury poisoning! Assumably from all the florescent lights breaking as the twin towers went down.

Gotham Gazette: “Detective James Zadroga was inside 7 World Trade Center on the morning of September 11, 2001. He escaped –- barely –- when the building collapsed. But Zadroga could not escape the damage done to his body by the hundreds of hours he spent at Ground Zero cleaning up the rubble in the following weeks. On January 5 of this year, Zadroga died from lung disease and mercury poisoning – a condition that hasn’t been a widespread occupational hazard for over a century when hatters were sickened as they dyed beaver pelts.”

The Heroes Of 9/11 Are Getting Sick

The directive only mandates shops to take back CFLs and other electronics if one buys a new one at the same time (great way to keep consumption going). Some shops have volunteered to take them back without such strings attached, but that is their own choice. When calling around to check, many of these retailers had no idea that Hg vapourises at room temperature and had no routines for avoiding CFL breakage in recycling bins until informed of this fact! Unfortunately, I’ve not been able to provide every shop in Europe with this information. I think it is the responsibility of the Commission to make sure all are informed.

The Waste Electrical and Electronic Equipment Directive (2002/96/EC) provides for the collection and recycling of waste electrical and electronic equipments (WEEE), including lighting equipment such as compact fluorescent lamps. (…) If consumers take back their burned-out compact fluorescent lamps to collection points just as they do with batteries, the mercury content will be recycled and not released to the environment.

Member States have to ensure that users of electrical and electronic equipment are given the necessary information about the requirement not to dispose lamps as unsorted municipal waste and to collect such waste separately, as well as about the return and collection system available to them. Member States are also responsible for ensuring the availability and accessibility of collection facilities.

Quite a hefty obligation costing extra resources which poorer countries may not have!

The Commission also proposed to recast the WEEE Directive on 3 December 2008, so that the collection target for all WEEE is increased and the recycling target for gas discharge lamps is set at the level of 85%. This proposal will now go to co-decision with the Council and the European Parliament.

Good. Why not recommend a refundable recycling fee, such as already exists for bottles and cans for all goods containing toxic elements? That would surely increase recycling rates. And don’t forget to inform that CFLs must be kept from breaking!

Improved incandescent bulbs with halogen technology that do not contain any mercury are and will remain available, however they provide 25-45% energy savings compared to conventional incandescent bulbs, whereas compact fluorescent lamps save up to 80%.

Not this again! Up to 65-75% according to your own statements earlier, remember? Unless we bring things like power factor, light deprication, frequent switching and cheap imports into the calculation… then it goes down to about the level of the best halogen energy savers.

LEDs (light emitting diodes) are a rapidly emerging mercury-free technology, meeting or even surpassing compact fluorescent lamps in efficiency. However, at this stage they are not yet developed enough to be valid alternatives to the full range of household conventional incandescent bulbs (mainly available in low light outputs only, equivalent to 25W conventional incandescent bulbs).

Right. And the light colour is even worse than in CFLs.

It can be expected that in the next few years they will develop to become replacements for most existing lamps, however there is no absolute certainty about that and we need to act on climate change right away with the products that are already on the market. Nevertheless, the Commission is financing research into LEDs for general lighting through the ongoing and future calls of the EU’s 7th Research Framework Programme. The proposed regulation will be revised at the latest 5 years after adoption, and due account will be taken of the state of development of the LED market.

Good. But you’re not going to save the planet by forcing CFLs on a public which has very good reason to be reluctant! Promoting CFLs so much stronger than Halogen Energy Savers will only create more problems down the line and, as mentioned previously, is already causing a health and environmental disaster in China!

Compact fluorescent lamps and health

III.17. Effect on light sensitive people

The light produced by compact fluorescent lamps aggravates the symptoms of people suffering from auto-immune diseases such as lupus and ME. They now use conventional incandescent bulbs in their homes, if these are phased out will they be left in the dark?

The Scientific Committee on Emerging and Newly Identified Health Risks (on a mandate from the Commission services) has been looking into the question of possible health effects of compact fluorescent lamps on people with certain diseases and on the general public, following up to complaints from certain patients’ associations. The Committee examined flicker, electromagnetic fields (EMF) and ultraviolet / blue light radiation from the lamps to determine whether they aggravate the symptoms of such patients.

In its report, the Committee found no evidence that would indicate that either EMF or flicker could be a significant contributor. For the general public, very close exposure to a bare lamp (< 20 cm) for more than 8 hours could eventually affect health by exceeding workplace limits on UV emissions. This is a situation that does not occur in normal use. Hands held very close to halogen lamps or touching conventional incandescent lamps get burnt much more quickly because of the intense heat, so such a situation is not usual anyway with household lamps.

On the other hand, according to the report the symptoms of a maximum of 250.000 people in the EU suffering from diseases accompanied by light sensitivity could be aggravated in the presence of bare compact fluorescent lamps (independent of distance) due to UV and blue light emissions. Using commonly available compact fluorescent lamps with a second lamp envelope can both solve the problem of light-sensitive patients and prevent overexposure of the general public even in extreme situations. However, the envelope slightly lowers (about 10%) the efficacy of the compact fluorescent lamp, meaning more lamps using more power will be needed for the same light output. Transparent or translucid luminaires that fully cover up the bare lamps have the same effect as a second lamp envelope.

Also alternative technologies can be chosen by consumers, such as improved incandescent bulbs (with halogen technology) that have identical light spectrum to conventional incandescent bulbs.

In addition, the ecodesign regulation on non-directional household lamps introduces maximum UV emmission limit values for compact fluorescent lamps.

Good. But the estimated 250.000 light sensitive people will still be victims of the potentially aggravating naked CFLs in environments they have no personal control over, now not just in office buildings but in more and more restaurants, shops and people’s homes, restricting their lives even more than before.

Frosted incandescent lamps emit the least UV radiation. And LED lamps of course, but they have lower light quality and equipping a whole home with LED lamps is not something everyone can afford. This is another reason frosted lamps need to be allowed on the European market again, besides protecting from glare in unshaded luminaires.

III.18. No effect on epilepsy and migraine

Is it true that compact fluorescent lamps produce light through high frequency discharges causing flicker and triggering attacks on people suffering from epilepsy or migraine?

The Scientific Committee on Emerging and Newly Identified Health Risks (on a mandate from the Commission services) did not find proper evidence underpinning any negative health effects relating to flicker. The Committee examined flicker, electromagnetic fields (EMF) and ultraviolet / blue light radiation from the lamps to determine whether they aggravate the symptoms of such patients. In its report, the Committee found no evidence that would indicate that either EMF or flicker could be a significant contributor. Modern compact fluorescent lamps operate at frequencies so high that they are beyond human perception.

Hm, this is what the SCENIHR report on light sensitivity actually says:

“Fluorescent lamps can cause eye-strain and headache (Wilkins et al. 1991). Patients with migraine show somewhat lowered flicker fusion thresholds during migraine-free periods (Kowacs et al. 2004). In addition, photophobia, which is an abnormal perceptual sensitivity to light experienced by most patients with headache during and also between attacks, is documented in many studies (Main et al. 2000). People with migraine claim to be particularly sensitive to blue light (European Lamp Companies Federation). Conclusion: Migraine can be induced by flicker in general (up to about 50 Hz) and patients are light sensitive during and between attacks [Evidence level A]. Scientific support for aggravating symptoms by flicker from fluorescent tubes was not found [Evidence level D]. There is anecdotal evidence of problems with blue light [Evidence level D].”

Lack of proof is not the same as proof of non-existence. There may also be other properties to CFLs that make them ill tolerated by sensitive people, e.g. glare, fluorescence, spiky spectral distribution, increasingly duller light that causes eye strain etc.

Compact fluorescent lamps provide light that flickers at a frequency of about 60 kHz (60 000 Hz). There is consensus that flicker of such high frequency is not perceptible to the human eye. It is already doubtful whether flicker at 100 Hz can be perceived. It is true that compact fluorescent lamps produce also some weak modulation at 100 Hz, however this is not unique to this lamp type. As SCENIHR writes, also incandescent bulbs emit a low-intensity “flicker” at 100 Hz, simply because this is twice the frequency of the mains voltage electricity network (the power being delivered to the lamp peaks twice per cycle).

A. It is not at all doubtful whether flicker at 100 Hz can be perceived by some. Swedish studies have shown extra sensitive individuals to perceive flicker above the normal threshold around 90 pps (I personally know several who claim to have this debilitating superability).

B. It is true that most CFLs sold today are of the high-frequency ballast type with a 60 KHz flicker rate, far above anything even the most perceptive human would be able to see. However, there is a wide range of human sensibility and I don’t think we can exclude the possibility that the bodies of exceptionally sensitive or sensitised individuals can subliminally perceive this extremely fast flicker and react to it as a stress factor, if not as a visible modulation. Quite a large number of people report headaches, migraine, stress or general discomfort triggered by fluorescent light, I’m sure they can’t all be imagining this, even if science has yet to find a plausible explanation? People with allergies, migraines and hypersensitivities tend to eventually become very apt at noticing what factors trigger their symptoms. Why should they not be believed? Also, about 15-20% of the population is estimated at being highly sensitive persons, and many of those tend to strongly dislike and feel disturbed by fluorescent light, even if they don’t get ill.

C. Just a couple of days ago I was surprised to be able to see several CFLs flickering in a dimly lit restaurant. I asked the staff about this and they said it was because the CFLs were slightly dimmed. This perceptible flicker was enough to cause a headache in an extra sensitive girl in our company.

D. Correct that incandescent lamps also flicker but as the filament keeps burning between pulses, this reduces the flicker to a more even light flow. I have yet to hear of a flicker sensitive person reacting to incandescent light.

III.19. Electromagnetic fields

Is it true that compact fluorescent lamps generate electromagnetic fields and should not be used as bedside lamps or desk lamps where they are too close to the human body?

Long answer: There is no scientific evidence of any link between the electromagnetic fields (EMF) emitted by compact fluorescents lamps and the symptoms of “electrically sensitive” people. EMF emissions from CFLs are within international limits on public exposure to EMF. Upon request of the European Commission, the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) has recently issued an opinion on Light Sensitivity, namely with regard to the possible aggravation of already existing symptoms of patients with certain diseases due to the use of compact fluorescent lamps.

The issue of electromagnetic hypersensitivity due to the use of such lamps has been examined. SCENIHR concluded that it has never been conclusively and convincingly shown that there exist any connections between electromagnetic fields (EMF) and the symptoms that are reported by persons with so-called electromagnetic hypersensitivity, although their symptoms are real and in many cases severe.

There is no scientific evidence of correlation between EMF from compact fluorescent lamps, and symptoms and disease states. SCENIHR also stated in its recent opinion on Health Effects of Exposure to EMF that the emissions from compact fluorescent lamps have been investigated recently and that available results showed compliance with existing limits. The levels decrease drastically beyond 30 cm from the lamps. In any case, compact fluorescent lamps available on the market have to fulfil the requirements of Directive 2006/95/EC on the harmonisation of the laws of Member States relating to electrical equipment designed for use within certain voltage limits.

Well, CFLs do emit more EMFs than incandescent lamps, I think we can agree on that, or there wouldn’t be any need for regulation. As for electrosensitivity, again I think people know their own bodies best. That studies have not been able to prove a link could be explained by poor test design, and by who gets funding to conduct such studies.

Also alternative technologies can be chosen by consumers, such as improved incandescent bulbs with halogen technology but without integrated transformer, which only generate the same type of electromagnetic fields as conventional incandescent bulbs.

Right. So class C halogens without integrated transformer need to be kept available for the allegedly electrosensitive after 2016, or they will have no option at all left, apart from candles and stinking kerosene lamps.

III.20. Mercury content and health

Compact fluorescent lamps contain mercury, which is a highly toxic substance. Do compact fluorescent lamps represent a danger to health because of that?

Mercury is an important component of compact fluorescent lamps (CFLs) that plays a key role in their energy efficiency and also other parameters such as lifetime and warm-up times. There are up to 5 milligrams (0,005 grams) of mercury contained in a CFL (compared to 50 milligrams in button batteries, 500 milligrams in dental amalgam filling or several grams in older thermometers). The 5 mg limit is set in the Restriction on Hazardous Substances Directive (2002/95/EC), which in general forbids mercury in electric and electronic equipment, but provides some exemptions in duly motivated cases. The limit is enforced by Member States equally on all bulbs, whether they are cheap Chinese ones or produced by European manufacturers.

But the Commission’s own consultants found one sample out of five to contain more than 5 mg… Who will check if all imported lamps stay within limits?

Compact fluorescent lamps have been widely used in European homes in the past decade, they will not be introduced by this regulation. Most office and public buildings, and also most streets have been equipped for the last 50 years with fluorescent and high-intensity discharge lamps containing mercury (often much more than compact fluorescent lamps).

As I’ve already pointed out, in offices lamps are are placed in the ceiling, in environments with adults only, whereas CFLs are meant to go in every possible luminaire at home if the Commission has its way, including floor and table lamps which can easily be knocked over by children, pets and at parties.

The mercury content cannot escape from CFLs, except in the event of accidental breakage of the lighting tubes. In that case less than 5 milligrams of mercury could be released.

The “5 milligrams” is an average. Some contain less, some more.

The Ecodesign regulation requires manufacturers to explain on their websites how consumers should clean debris in case the CFL’s tubes accidentally break, and to include on the packaging of each lamp the link to online explanations. Such an explanation is already available on the website of the European Lamp Companies Federation. In short, if the lamp breaks accidentally, if possible air the room before cleaning the lamp with a wet cloth, avoid skin contact with debris and do not use a vacuum cleaner.

Assumably this one: ELC Mercury Factsheet (not easy to find on their website). Let’s see what it says:

“Since energy saving fluorescent lamps are made of glass, care should be taken when handling them. Always screw and unscrew the lamp by its base, and do not forcefully twist the lamp into a light socket by its tube. Breaking an energy saving fluorescent lamp is extremely unlikely to have any impact on your health. Proper cleanup and adequate ventilation minimize the impact even further. If a lamp breaks, switch off the electricity and ventilate the room for 20-30 minutes. Broken lamps should be removed, preferably with protective gloves, and be placed in a sealed plastic bag in the disposal bin. Avoid using the vacuum cleaner to remove the broken parts.”

Not a very impressive clean-up guide… It downplays both proven dangers of mercury and the contamination level that may occur. The Maine DEP tests found that:

“Mercury concentration in the study room air often exceeds the Maine Ambient Air Guideline (MAAG) of 300 nanograms per cubic meter (ng/m3) for some period of time, with short excursions over 25,000 ng/m3, sometimes over 50,000 ng/m3, and possibly over 100,000 ng/m3 from the breakage of a single compact fluorescent lamp” “Although following the pre-study cleanup guidance produces visibly clean flooring surfaces for both wood and carpets (shag and short nap), all types of flooring surfaces tested can retain mercury sources even when visibly clean. Flooring surfaces, once visibly clean, can emit mercury immediately at the source that can be greater than 50,000 ng/m3. Flooring surfaces that still contain mercury sources emit more mercury when agitated than when not agitated. This mercury source in the carpeting has particular significance for children rolling around on a floor, babies crawling, or non mobile infants placed on the floor.” *

The ELC also gives incorrect (=dangerous) advice about debris storage! The Maine DEP testing found plastic bags and even plastic containers to be insufficient to prevent Hg vapour leaking out and contaminating everything around.

“Surprisingly, plastic jars, like large peanut butter containers with screw top lids were little better than plastic bags, also failing to prevent mercury vapour from leaking into the house. The best method of containing bulb waste is inside a glass jar with a hermetically sealed lid.”

Mercury in CFLs

Should EU not have the same recommendations; that

“homeowners consider not utilizing fluorescent lamps in situations where they could easily be broken, in bedrooms used by infants, small children or pregnant women, or over carpets in rooms frequented by infants, small children or pregnant women.”

And will EU require a label on the box stating the mercury content, warning about use around children pregnant women and explaining what to do and not to do in case of an accident?

Buying commonly available CFLs with an outer non-breakable lamp envelope is another way to address the issue of mercury leakage in case of accidental lamp breakage.

Right. So why not ban any CFL that has not got a non-breakable envelope and amalgam technology to keep people and the environment safe? Because some of the major producers don’t have such an option yet? Or because that would make the CFLs more expensive and slightly less efficient, which is more important issues than people’s health..?

Consumers who would particularly worry about mercury can choose alternative technologies such as improved incandescent bulbs with halogen technology, which do not contain mercury.

Not if they want a frosted bulb, as all frosted bulbs are now banned.

III.22 Light spectrum and public health (UV, hormones, cancer etc)

Does the specific light spectrum of compact fluorescent lamps make them a threat to public health?

The Scientific Committee on Emerging and Newly Identified Health Risks (on a mandate from the Commission services) has been looking into the question of possible health effects of compact fluorescent lamps on people with certain diseases and on the general public, following up to complaints from certain patients’ associations. In its opinion, the Committee concluded that for the general public, very close and prolonged exposure to a bare lamp (< 20 cm) could possibly affect health by exceeding workplace limits on UV emissions. According to the United Kingdom’s Health Protection Agency, less than 10% of the bare lamps exceed workplace limits in 8 hours of exposure at 20 cms from the lamp 14 , and none in 4 hours. This is a situation that is not very likely to occur during normal use, as experience with today’s household lamps suggests.

Earlier studies have found an increased risk for melanoma on some working people working indoors under fluorescent tubes in the ceiling, compared with people not working under FL.

Malignant melanoma and the exposure to fluorescent lighting at wo

The Association of Cutaneous Malignant Melanoma and Fluorescent Light Exposure

III.23. Safety issues and signs of end of life

Are compact fluorescent lamps safe for use? Is it normal if there is a bad odour or smoke when they are switched on, or if they emit an audible noise?

Compact fluorescent lamps placed on the EU market have to comply with the product safety legislation of the EU (notably the General Product Safety Directive 2001/95/EC and the Low Voltage Directive 2006/95/EC). Industry and international standardisation organizations established harmonised safety standards for compact fluorescent lamps many years ago and are periodically reviewing them. These standards provide presumption of conformity with product safety legislation in the EU. Compact fluorescent lamps should be replaced at the first sign of any odour, smoke, audible noise, or in case of erratic behavior such as flashing, flickering that may indicate an electrical component failure. If this happens clearly before the lifetime indicated on the packaging has elapsed, the lamp should be returned to the manufacturer or retailer for possible further analysis.

Good advice! Doesn’t make them sound very safe, though.

EU CFL FAQ 2 – Part III a

Here are comments to part III:1-11 of the FAQ#2. Part II was not relevant enough to comment, but anyone interested can read it for themselves here.

EU FAQ: III. Compact Fluorescent Lamp issues

III.1. Advantage of using compact fluorescent lamps

A compact fluorescent lamp offers:
– up to 80% energy saving compared to an conventional incandescent bulb
– about 60 € cost savings over its lifetime
– a lifetime of at least 6-10 years (compared to 1-2 years for conventional incandescent bulbs)
– no risk of burning due to the lamp’s operating temperature
– a wider choice of colour temperatures (cool or warm light, conventional incandescent bulbs can only be warm light)

Still desperately trying to find something good to say about the CFL, I see, as if the Commission were actually selling them instead of just defending an unpopular law. Well, we’ve already established that the best save theoretically 66-75%, in reality even less with all the below mentioned factors included. Thus, the other calculations must be adjusted downwards to reflect this.

III.3. Quantity of light

Is it true that compact fluorescent lamps produce less light than conventional incandescents?

Compact fluorescent lamps can produce just as much light as conventional incandescent bulbs. Consumers should check the product packaging to buy lamps of the appropriate power and light output. Currently, exaggerated claims are often made on the packaging about the light output of compact fluorescent lamps (e.g. that a 11-12 Watt compact fluorescent lamp would be the equivalent of a 60 Watt conventional incandescent, which is not true). The regulation will introduce restrictions on equivalence claims made on the product packaging, in order to keep the claims reasonable.

This is good! Will the Commission also quit making false claims about “80% savings” which, as mentioned in your own quote, is not true. (Only if an 11-12W CFL gave as much light as a 60W GLS would this be accurate.)

III.4. Lifetime

Is it true that compact fluorescent lamps have a much shorter life time than generally claimed?

Untrue. There are indeed low quality compact fluorescent lamps that do not reach their normal life time (6000 h), but most respect the claimed values in average domestic use.

Sources to back up this “most”, please. Life rates achieved in optimal lab conditions may be very different from those conditions encountered in homes…

The regulation introduces requirements on lifetime so that national market surveillance can eliminate free-runners.

Who will be doing the checking? I’ve been informed that quality tests are made in China, not in Europe. Will those that don’t pass the tests be banned from import and sales in Europe? Will those who make exaggerated claims be fined?

III.5. Switching frequency

Is it true that compact fluorescent lamps should not be switched on/off frequently because it shortens their lifetime? For example, does it make sense to install them in a toilet which is used for 5 minutes 10 times a day?

It is true that frequent switching reduces the lifetime of some compact fluorescent lamps. This functionality is also addressed by the regulation, requiring that compact fluorescent lamps should reach the claimed life time while being switched on/off once for every hour of operation. Where frequent on/off switching is likely, dedicated compact fluorescent lamps that can endure up to 1 million switching cycles, or other energy saving light sources insensitive to switching can be used (such as improved incandescent bulbs with halogen technology which will also remain available). If this is a feature consumers are concerned about, they should look out for the information on the product packaging, where the manufacturers will be required to display the number of times the lamp can be switched on before failure.

Short translation: Yes, it is true. That CFL life may be shortened by up to 85% by being switched on and off frequently, according to Osram and Chen W, Davis R, and Ji Y. 1998. “An Investigation of the Effect of Operating Cycles on the Life of Compact Fluorescent Lamps” which found that when the length of time the lamps were on was reduced from 3 hours to 1 hour, the lamp lasted for 80 percent of its rated life. When reduced to 15 min and 5 min, the lamp lasted for 30 percent and 15 percent, respectively, of its rated life.

As most of us don’t have and many possibly can’t afford the new and improved CFLs of higher quality that can withstand frequent switching, this means that in reality CFLs used at home and turned on and off many times a day do not last as long as their rated life. Consumer complaints all over the internet appear to support this assumption.

III.6. Dimmability

Is it true that compact fluorescent lamps cannot be dimmed?

Untrue, there are compact fluorescent lamps on the market that can be dimmed, and there are dimmers that can dim any compact fluorescent lamp. Consumers should carefully read product information concerning dimmability.

Most CFLs still cannot be dimmed. The few dimmable CFLs are a) hard to find; b) cost up to 20€; c) will not create that warm candle-like light like dimming incandescents does, but just make the already poorer quality light even more grey and dull than it already is. The only advantage is that you can use them in existing dimmable luminaires without destroying both lamp and luminaire and causing a fire hazard.

Improved incandescent bulbs with halogen technology will also remain available and provide full dimmability in all circumstances.

Not frosted halogens.

III.7. Starting and warm up times

Do compact fluorescent lamps really take longer to switch on and warm up to full light output than conventional incandescent lamps?

True. In order to guarantee an acceptable level of service with any compact fluorescent lamp, the regulation introduces minimum requirements on switch-on and warm-up times. Switching on a compact fluorescent lamp shall not take more than 2 seconds, and it should reach 60% of its full light output within one minute. However, there are now compact fluorescent lamps on the market that come close to conventional incandescent bulbs for these performance parameters from the point of view of the average consumer. If these are features consumers are concerned about, they should look out for the information on the product packaging, where the manufacturers will be required to display warmup-times.

An awful lot of things consumers need to educate themselves on, or ask well informed staff about, in order to get the right bulb for the right application. Before CFLs, you could just grab a bulb at the supermarket and stick it anywhere without problem. All you needed to know was watts and socket type.

Improved incandescent bulbs with halogen technology will also remain available and provide full light ouput instantly.

Not frosted.

III.8. Shape and light quality

Isn’t the shape of compact fluorescent lamps ugly and do they not produce unpleasant light (also in terms of colour rendering, colour temperature and light spectrum)?

Consumers usually find modern quality CFLs perfectly suitable for everyday tasks and aesthetically pleasing.

Eh, no. If this was true, there would be no customer complaints, there would be no objection to this regulation, or indeed a need for it at all, and people would not be hoarding incandescent bulbs in desperation.

Yes, they keep getting better, but that’s still not good enough. I keep checking state-of-the-art CFLs and LEDs just to make sure I’m not missing any acceptable replacements, but I have yet to find one that gives the same light as an incandescent or halogen.

There may be some substandard compact fluorescent lamps on the market, but those will be removed through the functionality requirements of the regulation.

Well, some are worse than others, yes, but all standard CFLs, even from leading manufacturers, have suboptimal colour rendering (CRI 82-85) and give a dull and dead light compared to incandescent/halogen.

Improved incandescent bulbs with halogen technology will also remain available and produce exactly the same light quality as conventional incandescent bulbs.

Yes they do, but you’ve already banned frosted halogens and want to phase out most of the rest too.

Overall, the perception of shape and light quality is quite subjective, however there are parameters that can be measured. On some of these parameters, CFLs are actually doing better than conventional incandescent bulbs and halogens.

Really now? Well, let’s see:

Size and shape

Modern CFLs come in a variety of sizes and shapes approaching that of conventional incandescent bulbs. The outer lamp envelope that hides the small twisted lighting tubes has become commonplace, and makes CFLs resemble frosted (non-transparent) conventional incandescent bulbs in appearance.

This is mainly an aestetic advantage to make them look and function more like a traditional bulb. But the outer bulb also makes them less efficient and durable so this isn’t what the Commission really wants us to use, it just sounds good to be able to use this example in reply to complaints about fit and look.

Colour rendering

In order to ensure proper colour rendering (ability to reproduce the colours of the objects lit) for CFLs, the regulation introduces a minimum requirement on this product parameter.

Which I assume will be CRI between 80 and 85 (= mediocre) as higher CRI means adding more phosphors, making them more expensive?

Colour temperature

CFLs can be produced with different colour temperatures (warm/cold) depending on consumer needs, whereas conventional incandescent lamps can only provide warm white light.

Here in the North that warm light is much appreciated, but those who still prefer a cooler light should use white LEDs as WLEDs are naturally cool-white without the added phosphor coating to make it almost-warm-white. LEDs also last longer, can often be dimmed and contain no mercury. No reason to use CFLs for this. For professional colour discrimination uses, there is also the halogen Solux lamp.

The regulation requires the indication of colour temperature on the lamp’s packaging, so consumers should watch out for this information.

Good. Even if it is another thing the consumers have to educate themselves on. One thing that is not so good is that manufacturers can claim same Correlated Colour Temperature as incandescent light = “same light”. But same CCT does not say anything about light quality or actual light colour. A pink-white CFL or green-white LED can have a CCT of 2700K and still not look at all like the golden-white light from an incandescent. Just like CFLs and LEDs can have a CCT of 5000K and still produce a very different colour than the warmish neutral-white of real sunlight.

Light spectrum

If natural daylight is taken as a reference, both conventional incandescent bulbs and compact fluorescent lamps fail to imitate it perfectly, but for different reasons. Natural daylight has a spectrum which is a continuous curve, as strong at the blue and ultraviolet wavelengths as at the yellow and red wavelengths. The light of conventional incandescent bulbs has a continuous spectrum, however it has very little blue component and an extremely high proportion of red and infrared component, therefore it is very yellow and most of it is emitted as heat.

Incandescent light is golden-white and the eye adjusts. As there are no gaps in the spectrum, all colours can be seen. How well depends somewhat on how bright it is, as incandescent light gets whiter at higher wattages.

The spectrum of compact fluorescent lamps differs from natural daylight in that it is not a continuous curve. They emit a high amount of light at certain wavelengths and almost nothing at adjacent wavelengths.

Correct. Which makes colours look rather dull, in comparison with how they look in incandescent light. Do try a direct comparison for yourself. (Yes, you too, commissioners, so you can see with your own eyes what you’re phasing out.) And do try with the back of a CD to see how much of the spectrum you can see under various lamps.

However, in terms of the proportion of light emitted within the blue and red wavelength ranges, there are compact fluorescent lamps that are able to reproduce daylight more precisely than conventional incandescent bulbs.

Those special superduperexpensive ‘full-spectrum’ lamps? I’ve tried them when working with colours and found them lacking. The best I’ve tried for true colour rendering was a 150W halogen floodlight and of course real daylight. Both of which have higher CRI and colour rendering capacity than even the best CFLs.

III.10. Is it true that compact fluorescent lamps do not work in cold temperatures?

A standard compact fluorescent lamp will indeed lose a substantial part of its light output in cold temperatures. However, there exist compact fluorescent lamps designed specifically for outdoor use which can withstand cold temperatures without losing performance. Consumers should watch out for this information (required by the regulation for display on the packaging) when purchasing compact fluorescent lamps. Improved incandescent bulbs with halogen technology will also remain available and can operate in any ambient temperature.

Great… more things to look out for…

III.11. Price

Aren’t compact fluorescent lamps much more expensive than conventional incandescent bulbs?

Compact fluorescent lamps are actually much cheaper than conventional incandescent bulbs if you consider also lamp life time and costs related to electricity consumption while using the lamps. During the lifetime of one compact fluorescent lamp you will have used 6-10 conventional incandescent lamps. And the compact fluorescent lamp will consume one fourth / one fifth of the electricity consumed by conventional incandescents, another cost saver. A six-year-life energy-saving bulb would save about €36 during its lifetime (60W conventional incandescent versus 15W compact fluorescent lamp). This is based on an assumption of 3 continuous burning hours per day, for an energy cost of 0,136 €/kWh. The initial difference in the lamp price is paid back in 8 months through electricity savings and because of the distribution of the product cost over a longer lifetime (assuming a price of 4,50 € for the compact fluorescent lamp and 60 cents for incandescent bulb).

Hm, but if one has switched the CFL on-and-off too often (due to not being informed of the 15-minute-on recommendation), or used it in a closed or recessed luminaire (due to not having been informed that it may get overheated), or it loses too much output after a while so that it has to be replaced long before it burns out (and not having been informed that one should buy a 20W to compensate for the inevitable gradual loss that all CFLs suffer from), or one got a poor quality CFL at the local gas station that only lasted half the promised life, this rather cuts expected savings too, doesn’t it?

EU CFL FAQ 2 – Part I

After the massive critique following the dedcision to phase out standard incandescent lamps in favor of problem-ridden CFLs, the European Commission some months ago obviously found it necessary to issue another FAQ explaining the details and rationale behind the decision and answering some of the many justified questions posed by us critics.

This one is if possible even longer and more verbose than the first FAQ that I commented on in March, so I’ll have to take this one in installments and still leave some parts out as it keeps repeating the same phrases over and over, probably in an attempt to overwhelm the reader into submission and acceptance of the unacceptable.

EU FAQ: I.1. Political motivation for the phase-out

Why is it necessary to phase-out conventional incandescent bulbs?

The European Union remains committed to achieving its objectives in the fight against climate change, including the reduction of primary energy use by 20% compared to business as usual by 2020. Requirements on the energy efficiency of products are a cornerstone of the Community policy aiming to achieve this target. Lighting may represent up to a fifth of a household’s electricity consumption. There is a four to five-fold difference between the energy consumption of the least efficient and the most efficient lighting technologies available on the market. This means that upgrading the lamps could reduce a household’s total electricity consumption by up to 10-15% and save easily 50€ / year (taking into account the purchasing cost of lamps).

My comment: a. According to statements elsewhere in this FAQ, the Commission acknowledges the fact that there is a max 4-fold difference (and more if you bring poor power factor, light deprecation and other factors also admitted by industry and Commission both). However, the “4-5-fold” argument was used to sell the ban to politicians so I guess they feel a need to stick to it. Or they don’t understand the issue well enough themselves, which is quite possible.

b. Lighting is an average of 10% of home electricity in EU, and electricity in turn is only 8.5% of total EU energy use, making lighting 0.75% of total. Of this, only around half the lamp stock is still incandescent, according to the Commission’s own consultants. Half of 0.76% of = 0.38%. Of these 0.38% the EC hopes to save 65-75%, which would be 0.25-0.28% of EU total energy consumption if all lamps were replaceable with CFLs and if CFLs really saved that much, which is not the case. This is not very close to the “saving 20% by 2020” goal is it?

Section I.2. contains a description with pictures of what types of lamps will be banned and when. Short summary:

– Last (lowest wattage) standard incandescent banned by 2012.

– Affordable look-alike class C Halogen Energy Savers will be permitted until 2016. (Frosted ones are already banned, though.)

– After 2016 only the super-expensive and hard-to-find Class B Halogen Energy Savers with infrared coating and integrated transformers will be permitted as replacement lamps for standard incandescents.

– Also permitted after 2016 will be more efficient “special cap” halogen lamps, e.g. those mini-bulbs that go in halogen spotlights and the thin double-ended tubes that go in floodlight luminaires.

My comment: Good! I was worried there for a while that all of those would disappear from the market with no replacements to fit in existing downlight-, uplight-, spotlight and floodlight luminaires. If the added xenon makes these more efficient than standard halogen lamps, even better.

– CFLs and LEDs will also be permitted after 2016, the latter expected to become viable alternatives in the near future as their brightness, affordability and quality improve.

D. Compact fluorescent lamps (CFLs)

Its main interest lies in its long lifetime and high efficiency, the lamp will use between 65% and 80% less energy (from a third up to the fifth of the energy) for the same light output compared to conventional incandescents.

I already pointed out in my comments to the first FAQ that you cannot claim a lamp “saves 80%” when you in the very same FAQ acknowledge the fact that:

“Today, the same quantity of light (around 750 lumens) can be produced by an incandescent bulb using 60 W, a halogen bulb using 42 W, or a compact fluorescent lamp using 15 W.”

This means 75% not 80%.

It sometimes comes with an external envelope which hides the tubes and makes it even more similar to light bulbs (though decreasing its efficiency). The envelope also shields off any unwanted ultaviolet radiations and mitigates the risks connected to mercury emissions because of lamp breakage (especially if it is made of non-breakable silicone). CFLs can live between 6000 and 15000 hours, depending on type and use (as opposed to 1000 hours for an incandescent bulb).

The enveloped bulb type is harder to make long-life due to heat buildup within the outer bulb, loses more output with age and is somewhat less efficient. The Eco-Design group and its consultants already know this, yet always recommend this outer bulb type as the solution to complaints about mercury, UV, harsh light etc., while at the same time basing all savings estimates on the performance of the best, top brand, naked tube CFLs under optimal lab conditions, compared with the poorest performing incandescent!

This strikes me as manipulaitve and outright dishonest. And fooling not only fellow politicians, media and the average Joe, but also themselves, as their projections for how to meet the 2020 goal will turn out to be the fantasy it is when based on skewed calculations rather than on complex reality.

I.3. Ambition level for frosted lamps
Why go for class A and ban even class C/B frosted bulbs from the market?

During the preparatory process leading to the adoption of the Regulation, the analysis showed that among frosted lamps which diffuse light, there was reason to require the highest level of efficiency corresponding to class A of the EU energy label for lamps. 2 This level of efficiency is achievable by compact fluorescent lamps and by light emitting diode lamps. The type of soft light provided by frosted incandescent bulbs and by compact fluorescent lamps does not differ substantially for the average consumer, therefore the more efficient technology can easily replace the other.

But it does differ substantially. See my post about light quality: There is NO lamp left on the market which can replace the frosted incandescent lamp. CFL and LED lamps do not produce the same light quality, this should be visible to anyone who is not colour blind, besides being measurable by spectral analysis.

Clearly, this measure was taken in order to force that majority who prefer non-glaring frosted lamps to buy CFLs instead, by removing all frosted alternatives, including frosted Halogen Energy Savers!

For those who really cannot tolerate the substandard light quality of CFLs and LEDs, I strongly urge the Commission to reconsider this hasty decision and permit frosted Halogen Energy Savers. There is no reason whatsoever to ban those. People should have a free choice which energy saver they prefer to use.

The frosted halogen lamp is excellent for reading, for example, while clear lamps cause glare and disturbing patterns on the page. Removing all frosted incandescent and halogen lamps from the market creates a gap that no other lamp can fill, leaving elderly and vision impaired literally in the dark.

However, sometimes consumers look for the particular light quality/aesthetics delivered by transparent lamps, which provide a bright point-like light, useful e.g. in crystal chandeliers. For these applications, there is a need to keep alternatives to compact fluorescent lamps, which cannot deliver the same type of light. This means leaving less efficient, but still enhanced incandescent bulbs (of the halogen type) on the market, at least as long as there is no more efficient technology that can replace them.

Glad that the Commission recognises this at least.

Such lamps also provide alternatives for the few situations where the use of compact fluorescent lamps is not recommended due to practical reasons (such as in locations where the light is switched on rarely and for a short time only).

Non-glaring frosted Halogen Energy Savers would have been a nice option to have. Here the Commission has removed a whole product group without there being a useful alternative for elderly, vision impaired and others who need frosted incandescent light in order to see well without being blinded.

I.4. Ambition level for clear lamps

Why is the minimum efficiency requirement not raised to class A for clear (transparent) lamps too?

The requirement on clear lamps is only raised to class C until 2016 (and to class B beyond 2016), so that other efficient technologies (such as improved incandescent bulbs with halogen technology) can remain on the market. This is necessary because current-day compact fluorescent lamps and light emitting diodes cannot provide the same type of light as the conventional incandescent lamps that are being phased out.

However improved incandescent bulbs with halogen technology do, and consumers who are keen on conventional incandescent light quality for aesthetics or health reasons should have access to it.

Yes, they should. So bring back the frosted halogens!

I.5. Proportionality of the phase-out – why not voluntary approach or other measures (taxation, ETS)

Is it not disproportionate that the European Commission bans conventional incandescent bulbs from the market? Would it not be better to leave the choice to citizens or to make use of other measures to achieve the switch (such as voluntary restrictions as in the UK, information to the public or taxation)? Isn’t the EU’s Emissions Trading System (ETS) anyway supposed to take care of the emissions related to electricity generation? Does ETS not affect consumer choices already indirectly, through price mechanisms?

The European Commission did not decide on its own to phase out conventional incandescent bulbs, it is done in agreement with the European Parliament and with the Council of Member States.

So, after singlehandedly pushing this ban with extreme fervour, hiring consultants who appear to hate incandescent light with a passion and are only too happy to produce a questionable preparatory study that supports a ban, and issuing a totally misleading Technical Briefing that gave voting politicians the faulty impression that this measure will save 10-15% of the 20% goal rather than 0.25%, you now want the Parliament and Council to share the blame?!

Introducing minimum efficiency requirements for a product group such as light bulbs (rather than relying on a voluntary approach) is not disproportionate in this case. The market has clearly failed to move towards the alternatives to conventional incandescent bulbs, even though they cost much less to the consumers over their entire life cycle.

Because the main product pushed is inferior compared with incandescent lamps. It is truly as simple as that. People are not stupid. If it was a great product it would sell itself! Forcing a lower-quality product on people against their will is truly bizarre! Especially when lighting is so vital both for mood and ergonomics, it’s not like regulating aquarium pumps or water beds which most can surely do without.

The European Union’s Emissions Trading System (ETS) directly affects the emissions of electricity generation, however there is cost-effective saving potential also in the reduction of electricity use of households, which cannot be directly achieved through ETS. Although the indirect impact of the ETS could translate into an increase in electricity prices and therefore in the use-phase costs of an incandescent bulb, such an increase would have to be multi-fold in order to become sufficiently visible for convincing in the short term every single consumer to buy a compact fluorescent lamp instead.

But the whole point is that you shouldn’t convince every single consumer to buy a CFL instead, since it is an inferior quality product, hated by many and containing mercury on top of it. Instead, you could convince enough people to turn down indoor heat or cooling one degree and save much more. You could reward utilities for handing out free dimmers, sensors and timers. Or you could regulate and tax junk food, which uses astronomical amounts of electricity in production, distribution and storage, and causes costly and disabling health problems on top of it.

Still the main point is that efficient lighting as provided for in the regulation is a way to save energy, to limit CO 2 emissions and to help consumers save money without loss of functionality.

As Peter Thornes keeps pointing out, it is not up to the Commission to save people money. This is just the usual sales propaganda from Market Transformation Programs rehashed to make it sound like a better idea than it is. For comparison, just think of the amount of money the average household would save if there was no junk food to buy in the shop! Or if alcohol and tobacco were banned. But the EC doesn’t really care about people’s private economy, does it?

And I still don’t see an explanation why a tax or VAT won’t work.

I.6. Alleged intrusion of Brussels into citizens’ private lives

How come the bureaucrats of the European Commission are suddenly taking a decision that affects so much the life of every European citizen?

By adopting a regulation aiming to phase out the less energy efficient lamps, the Commission implemented the specific mandate from the European Parliament and the Council of Member States as originally laid down in the Ecodesign Directive (2005/32/EC, see point II.3 of this FAQ). In its Article 16, the Directive specifically requested the Commission to introduce implementing measures on lighting in the domestic sector through this procedure.

The importance of this measure was underlined by the Spring European Council of 2007, which invited the Commission to “rapidly submit proposals to enable increased energy efficiency requirements (…) on conventional incandescent lamps and other forms of lighting in private households by 2009″ and by the European Parliament in its resolution of 31 January 2008 on the Action Plan for Energy Efficiency, where the European Parliament stressed ” the importance of the Commission’s keeping to the proposed timetable for the withdrawal of the most inefficient light bulbs from the market”. Again, in October 2008, the Council of Energy Ministers invited the Commission to ” submit in 2008 a draft Regulation that will launch a gradual process of phasing out until conventional incandescent lamps and all the worst-performing lights are banned.”

In parallel to these mandates, the Commission’s services developed a draft regulation on non-directional household lamps. The procedure started already in December 2006 through a preparatory study. After a thorough technical-environmental-economic analysis of the available household lamps and their improvement potential, which was carried out openly with the involvement of stakeholders, a working document based on these recommendations was discussed with Member States and stakeholders (including a wide range of NGOs and industry) in the Ecodesign Consultation Forum in March 2008.

Building on the opinions expressed in the Forum, and on a parallel impact assessment, the Commission’s services prepared the text of the draft regulation, which was fully endorsed in the Regulatory Committee on 8 December 2008, without opposition from any of the Member States.
The Environment Committee of the European Parliament discussed the measure on 17 February 2009 and decided not to object to it. Finally, the European Commission adopted the Regulation on 18 March 2009.

This exhaustive preparatory process has ensured that the interests of European citizens were well represented during the development of the regulation.

Hardly. Few of those directly affected were even told of this impending decision before it was too late, and not exactly informed on how to protest. And the discussion/vote was rushed through several weeks before the three month objection time was up.

Peter Thornes describes the whole charade from beginning to end here:

I.8. The quantity of savings compared to other sectors and countries

How do the estimated savings compare to the total electricity consumption the EU? Are they not insignificant, considering that household lighting itself is only a small share of the total consumption? Is it not superfluous to adopt measures that bring so little improvement compared to the whole? Other sectors and other countries could make more important savings. Why bother with light bulbs?

When comparing the estimated saving potential of the regulation (39 billion kilowatthours per year by 2020) to the electricity consumption of the EU, it may seem insignificant (1,4 % of the total final electricity consumption of the 27 Member States in 2006, which was 2826 billion kilowatthours).

Let’s see how the “1,4%” was arrived at:

Some figures for EU-27 in 2006:

Final energy consumption (all fuels, all sectors): 1177 Mtoe (megatons of oil equivalent)

Final electricity consumption (all sectors): 2826 billion kWh or 243 Mtoe

Final energy consumption of households (all fuels): 304.9 Mtoe

Final electricity consumption of households: 807 billion kWh or 69.4 Mtoe

Electricity consumption of household lighting: 105.89 billion kWh or 9.1 Mtoe = 13% of household electricity consumption, 3% of total household energy consumption, 1.4 % of total electricity consumption (all sectors)

Well, I’m very glad to find a previously unseen effort to separate sectors and not confuse electricity and total energy consumption (could it perhaps be inspired by my energy statistics posts)? Seems we arrived at fairly similar figures anyhow (= lighting around 3% of household energy use). Except on that last one. Unless my calculator is playing tricks on me, I get 0.77%, not 1.4%.

However, the total electricity consumption of the EU includes the consumption of all sectors, namely industry, transport, agriculture etc., not just households. It is clear that in order to fight climate change effectively, all sectors need to contribute. The regulation on non-directional household lamps affects lamp types that are primarily used in households (although to some extent also in non-household applications such as restaurants, hotels, shops etc.). Therefore it is fair to compare the estimated savings to the electricity consumption of the household sector in the EU, which was 807 billion kWh in 2006, of which 5% will be saved.

Here we go again using the old electricity confusion stunt to muddle the waters and make savings sound more than they truly are. 5% = 1.14% of total household energy consumption. That is, if the phase-out will truly save this much (which is won’t, see below).

The estimates above are based on the assumption that households will be using a mixture of improved incandescent bulbs with halogen technology and compact fluorescent lamps. However, switching to the exclusive use of compact fluorescent lamps and LEDs makes economic sense for households, who would save much more energy and money.

We have heard this argument a million times. It still does not address the quality issues with CFLs and LEDs. If the lamps had good enough light quality and fit everywhere, people would buy them without force, especially now that price is going down and relative quality (compared to earlier models) up. No one wants to waste energy. But some of us do care about being able to see well and have a warm relaxing lighting environment in our own homes and do not find even the best CFLs or LEDs fulfilling those requirements.

If all households switched to the exclusive use of compact fluorescent lamps and LEDs, at the EU level we would be saving 86 billion kilowatthours by 2020, which is 11% of the electricity consumption of households.

If lighting is estimated (with much encertainty) at under 13% of household electricity (I assume this is your source for that number: Residential Lighting Consumption and Saving Potential in the Enlarged EU) and CFLs save (optimistically) 66-75% of those almost 13%, how does that make 11%? 66-77% of 13 is 8.58-9.75%.

But that would be assuming a) that the 13% of of electricity use is an accurate estimation; b) that those lamps are all incandescent (which they are not, see below); c) that all CFLs work as well as claimed (consumer tests show many don’t, or else we wouldn’t need new quality labels); d) that they don’t have poor power factor (which most standard CFLs do), e) that there was no heat replacement effect in cooler regions (which there is, according to studies), f) that people wanted to buy them despite the quality issues (many don’t or they wouldn’t be hoarding incandescents), and g) that it was even possible to replace all lamps with LEDs or CFLs (which is not the case, even according to your own consultants):

VITO: “…some customers have a few light points left where they prefer to keep the GLS due to barriers for CFLi as explained in chapter 3 (e.g. requirements to color rendering, sparkling effect etc.) or because of the lamp has little usage such as in cellars, staircases or storage rooms and where full lighting is also needed immediately.”

Therefore the fantasy of replacing all home lamps with CFLs or LEDs remains a fantasy – the If-game. Let’s stick to reality, please.

The electricity consumption of household lighting is a minor part (3%) of the total energy consumption of a household (heating and water heating included).

Now we’re getting back to the proper perspective!

However, it should also be underlined that the regulation on non-directional household lamps is just one of a series of 30 or more Commission regulations (already adopted or being prepared for adoption in the near future) concerning the energy efficiency of different product groups such as televisions, heating boilers, water heaters, electric motors etc. These regulations all contribute to a combined impact that will make the real difference in terms of our objectives to reduce energy use and combat climate change.

But isn’t it true that light bulb regulation was sold to voting politicians as The Big Thing – that One Green Measure that was going to get us massively closer to the 2020 goal? Could it have been my pointing out what a drop in the energy ocean home lighting actually is in my energy statistics post, that has prompted this unconvincing retort?

And it’s not exactly a good defense of the first unpopular regulation, to state that there will be more unpopular regulations added to get an effect. I assume Heat Replacement Effect are not calculated for the other products either?

It also puzzles some of us how EU on the one hand takes the liberty of actually banning a non-harmful product, totally in opposition with the free market guideline, and strongly promoting a competing product which may harm both health and the environment and is already doing much damage to both in China*, while at the same time objecting to member state governments recommending people to buy locally produced food in order to minimise emissions from transport.** Food transport is a huge polluter and energy consumer and the less of it the better for the planet, no?

* “‘Green’ lightbulbs poison workers”
** “Swedish food guidelines meet protests from the EU” (unfortunately, this article is now removed).

I.9. Market share of different bulb types

How many conventional incandescent bulbs are in use at present in the EU, compared to energy saving bulbs?

In 2006, there were 5.1 billion lamps installed in EU households. Of these, 4.2 billion lamps were non-directional lamps, the remaining 0.9 billion reflector lamps.

Having lamps installed is not the same thing as having lamps in use. If calculations on lighting part of household energy use are based on number of lamps installed, this could make lighting appear to use a much larger part of home electricity than is actually the case. This also omits counting dimmers and sensors and how many houshold’s have learned to turn the lights off when leaving the room in order to save electricity. The EU lighting consumption study appears to confirm this:

EU lighting study: “It is not easy to compile accurate and comprehensive data on the total end-use consumption of individual equipment and appliances, as these are not usually separately metered.”

“”The first important point is that lighting data is very scarce, as is most of the different electricity enduse data for the residential sector. While it is easier to calculate the national consumption of large appliances such as refrigerators and washing machines is (equipment stock, user habit, and other influencing factors are well known), with regard to lighting data about the power installed, the number of lamps, the burning hours is often missing.”

And without the burning hours, you’re left guessing – and easily overestimating.

EU FAQ: The total stock of lamps affected by this regulation (all sectors including household, tertiary etc.) was 3.9 billion lamps in 2007. 1 billion lamps (25% of the total) were compact fluorescent lamps, and 2.1 billion were incandescent bulbs.

Source: Preparatory Study for Eco-design Requirements of EuPs – Domestic lighting, Chapter 2 available at

Always trying to make it sound as much as possible while still making things less than clear. This is what the study actually says:

VITO: Based on surveys of 500 consumers in 11 countries, the EU-27 average share per household 2007 was estimated at:
• 54% of the lamps incandescent (and decreaseing)
• 18% of the lamps low-voltage halogen (and increasing)
• 5% of the lamps mains-voltage halogen (and increaseing)
• 8% of the lamps linear flourescent
• 15% of the lamps CFL with integrated ballasts

It also indicates that incandescent lamps were expected to keep decreasing dramatically, even in the “business-as-usual” scenario (= without a ban)!!

Now, 54% 2007 means probably less than 50% today. That means 50% of those alleged but uncertain almost 13% = 6.5%. And then 66-75% of those = 4.29-4.87% of electricity, assuming a) – g) above, which again is contrary to known and provable facts, so more likely around 50%, generously speaking. Now we are down to 3.25% of household electricity consumption. Which can easily be saved by other means.

I.11. Role of the lamp industry

Did the Commission take this decision under the influence and in the interest of lamp companies?

The European Commission did not decide on its own to phase out conventional incandescent bulbs, it is done in agreement with the European Parliament and with the Council of Member States. Regulation 244/2009 was developed by the Commission on a mandate from the Ecodesign Directive (2005/32/EC) of the European Parliament and of the Council of Ministers of the Member States. The request to phase out conventional incandescent bulbs was made by the European Council in 2007 and further reinforced by the European Parliament and by the Council of Energy Ministers in 2008. The Regulation itself was prepared in an open process lasting two years with the formal involvement of stakeholders such as consumer and environmental NGOs. European industry was also consulted, they claimed initially that the provisions of the planned measure would be much too ambitious in terms of timing and requirements. However, the Commission and the Member States decided to maintain the level of ambition, with the support of the other stakeholders. In the framework of their right of scrutiny, both the Council of Ministers and the Parliament decided not to object to the draft Regulation before it was adopted by the Commission in March 2009.

That manufacturers needed longer to adjust their production once the goal was within reach does not mean that the idea of getting rid of their most unprofitable but popular lamp once and for all, didn’t originate within the industry. The global anti-lightbulb campaign, via Market Transformation Programmes, has been one of the most well-coordinated, persistent and far-reaching propaganda acts in history.

That the Commission and most EMPs have swalloed all the usual PR lines (which all you need is a manufacturer catalogue and a calculator too see are exaggerated, and which I believe was also communicated by PLDA before the EMP debate and final vote) does not inspire trust in our leader’s judgement.

Let me just emphasise that I am not against energy saving and making more efficient products. But it is not acceptable to be forced to use a lower quality product for something as important as lighting.

The Commission now keeps repeating that Halogen Energy Savers and LEDs are also available, but these products are not easy to find and were not even included in the preparatory study; all calculations were based on the naked tube CFL. This is clearly the lamp which the Commission and industry both hope we will all use in most of our lamps, despite its looong list of problems, including the mercury content. I find this more than a little strange.

« Older entries